|
In computer science, a B-tree is a self-balancing tree data structure that keeps data sorted and allows searches, sequential access, insertions, and deletions in logarithmic time. The B-tree is a generalization of a binary search tree in that a node can have more than two children . Unlike self-balancing binary search trees, the B-tree is optimized for systems that read and write large blocks of data. B-trees are a good example of a data structure for external memory. It is commonly used in databases and filesystems. ==Overview== In B-trees, internal (non-leaf) nodes can have a variable number of child nodes within some pre-defined range. When data is inserted or removed from a node, its number of child nodes changes. In order to maintain the pre-defined range, internal nodes may be joined or split. Because a range of child nodes is permitted, B-trees do not need re-balancing as frequently as other self-balancing search trees, but may waste some space, since nodes are not entirely full. The lower and upper bounds on the number of child nodes are typically fixed for a particular implementation. For example, in a 2-3 B-tree (often simply referred to as a 2-3 tree), each internal node may have only 2 or 3 child nodes. Each internal node of a B-tree will contain a number of keys. The keys act as separation values which divide its subtrees. For example, if an internal node has 3 child nodes (or subtrees) then it must have 2 keys: ''a''1 and ''a''2. All values in the leftmost subtree will be less than ''a''1, all values in the middle subtree will be between ''a''1 and ''a''2, and all values in the rightmost subtree will be greater than ''a''2. Usually, the number of keys is chosen to vary between and , where is the minimum number of keys, and is the minimum degree or branching factor of the tree. In practice, the keys take up the most space in a node. The factor of 2 will guarantee that nodes can be split or combined. If an internal node has keys, then adding a key to that node can be accomplished by splitting the key node into two key nodes and adding the key to the parent node. Each split node has the required minimum number of keys. Similarly, if an internal node and its neighbor each have keys, then a key may be deleted from the internal node by combining with its neighbor. Deleting the key would make the internal node have keys; joining the neighbor would add keys plus one more key brought down from the neighbor's parent. The result is an entirely full node of keys. The number of branches (or child nodes) from a node will be one more than the number of keys stored in the node. In a 2-3 B-tree, the internal nodes will store either one key (with two child nodes) or two keys (with three child nodes). A B-tree is sometimes described with the parameters — or simply with the highest branching order, . A B-tree is kept balanced by requiring that all leaf nodes be at the same depth. This depth will increase slowly as elements are added to the tree, but an increase in the overall depth is infrequent, and results in all leaf nodes being one more node farther away from the root. B-trees have substantial advantages over alternative implementations when the time to access the data of a node greatly exceeds the time spent processing that data, because then the cost of accessing the node may be amortized over multiple operations within the node. This usually occurs when the node data are in secondary storage such as disk drives. By maximizing the number of keys within each internal node, the height of the tree decreases and the number of expensive node accesses is reduced. In addition, rebalancing of the tree occurs less often. The maximum number of child nodes depends on the information that must be stored for each child node and the size of a full disk block or an analogous size in secondary storage. While 2-3 B-trees are easier to explain, practical B-trees using secondary storage need a large number of child nodes to improve performance. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「B-tree」の詳細全文を読む スポンサード リンク
|