翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

BU(n) : ウィキペディア英語版
Classifying space for U(n)
In mathematics, the classifying space for the unitary group U(''n'') is a space BU(''n'') together with a universal bundle EU(''n'') such that any hermitian bundle on a paracompact space ''X'' is the pull-back of EU(''n'') by a map ''X'' → BU(''n'') unique up to homotopy.
This space with its universal fibration may be constructed as either
# the Grassmannian of ''n''-planes in an infinite-dimensional complex Hilbert space; or,
# the direct limit, with the induced topology, of Grassmannians of ''n'' planes.
Both constructions are detailed here.
==Construction as an infinite Grassmannian==
The total space EU(''n'') of the universal bundle is given by
:EU(n)=\left \ \right \}.
Here, ''H'' is an infinite-dimensional complex Hilbert space, the ''e''''i'' are vectors in ''H'', and \delta_ is the Kronecker delta. The symbol (\cdot,\cdot) is the inner product on ''H''. Thus, we have that EU(''n'') is the space of orthonormal ''n''-frames in ''H''.
The group action of U(''n'') on this space is the natural one. The base space is then
:BU(n)=EU(n)/U(n)
and is the set of Grassmannian ''n''-dimensional subspaces (or ''n''-planes) in ''H''. That is,
:BU(n) = \
so that ''V'' is an ''n''-dimensional vector space.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Classifying space for U(n)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.