翻訳と辞書
Words near each other
・ Bergall
・ Bergama
・ Bergama Acropolis Gondola
・ Bergama Belediyespor
・ Berezhany Castle
・ Berezhany Raion
・ Berezhnytsia
・ Berezhok
・ Berezhyntsi
・ Berezin
・ Berezin B-20
・ Berezin integral
・ Berezin transform
・ Berezin UB
・ Berezina River
Berezinian
・ Berezivka
・ Berezivka Raion
・ Berezka
・ Berezlogi
・ Berezne
・ Berezne Raion
・ Bereznehuvate Raion
・ Berezney
・ Berezniaky
・ Bereznianka
・ Bereznik
・ Bereznik, Vinogradovsky District, Arkhangelsk Oblast
・ Berezniki
・ Berezniki Airport


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Berezinian : ウィキペディア英語版
Berezinian
In mathematics and theoretical physics, the Berezinian or superdeterminant is a generalization of the determinant to the case of supermatrices. The name is for Felix Berezin. The Berezinian plays a role analogous to the determinant when considering coordinate changes for integration on a supermanifold.
==Definition==
The Berezinian is uniquely determined by two defining properties:
*\operatorname(XY) = \operatorname(X)\operatorname(Y)
*\operatorname(e^X) = e^A & 0 \\ 0 & D\end
Such a matrix is invertible if and only if both ''A'' and ''D'' are invertible matrices over ''K''. The Berezinian of ''X'' is given by
:\operatorname(X) = \det(A)\det(D)^
For a motivation of the negative exponent see the substitution formula in the odd case.
More generally, consider matrices with entries in a supercommutative algebra ''R''. An even supermatrix is then of the form
:X = \beginA & B \\ C & D\end
where ''A'' and ''D'' have even entries and ''B'' and ''C'' have odd entries. Such a matrix is invertible if and only if both ''A'' and ''D'' are invertible in the commutative ring ''R''0 (the even subalgebra of ''R''). In this case the Berezinian is given by
:\operatorname(X) = \det(A-BD^C)\det(D)^
or, equivalently, by
:\operatorname(X) = \det(A)\det(D-CA^B)^.
These formulas are well-defined since we are only taking determinants of matrices whose entries are in the commutative ring ''R''0. The matrix
: D-CA^B \,
is known as the Schur complement of ''A'' relative to \begin A & B \\ C & D \end.
An odd matrix ''X'' can only be invertible if the number of even dimensions equals the number of odd dimensions. In this case, invertibility of ''X'' is equivalent to the invertibility of ''JX'', where
:J = \begin0 & I \\ -I & 0\end.
Then the Berezinian of ''X'' is defined as
:\operatorname(X) = \operatorname(JX) = \det(C-DB^A)\det(-B)^.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Berezinian」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.