|
In theoretical physics, specifically quantum field theory, a beta function, ''β(g)'', encodes the dependence of a coupling parameter, ''g'', on the energy scale, ''μ'', of a given physical process described by quantum field theory. It is defined as :: and, because of the underlying renormalization group, it has no explicit dependence on ''μ'', so it only depends on ''μ'' implicitly through ''g''. This dependence on the energy scale thus specified is known as the running of the coupling parameter, a fundamental feature of scale-dependence in quantum field theory, and its explicit computation is achievable through a variety of mathematical techniques. ==Scale invariance== If the beta functions of a quantum field theory vanish, usually at particular values of the coupling parameters, then the theory is said to be scale-invariant. Almost all scale-invariant QFTs are also conformally invariant. The study of such theories is conformal field theory. The coupling parameters of a quantum field theory can run even if the corresponding classical field theory is scale-invariant. In this case, the non-zero beta function tells us that the classical scale invariance is anomalous. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Beta function (physics)」の詳細全文を読む スポンサード リンク
|