翻訳と辞書
Words near each other
・ Bicolored apple
・ Bicolored conebill
・ Bicolored false moray
・ Bicolored foxface
・ Bicolored frog
・ Bicolored musk shrew
・ Bicolored roundleaf bat
・ Bicolored shrew
・ Bicolored swamp snake
・ Bicolored wren
・ Bicolored-spined porcupine
・ Bicoloured flowerpecker
・ Bicoloured hawk
・ Bicoloured mouse-warbler
・ BICOM
Bicommutant
・ Bicomplex number
・ BiCon
・ BiCon (UK)
・ Bicon Dental Implants
・ Biconcave disc
・ Bicondica
・ Biconditional elimination
・ Biconditional introduction
・ Bicone
・ Biconic cusp
・ Biconical antenna
・ Biconiosporella
・ Biconjugate gradient method
・ Biconjugate gradient stabilized method


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Bicommutant : ウィキペディア英語版
Bicommutant

In algebra, the bicommutant of a subset ''S'' of a semigroup (such as an algebra or a group) is the commutant of the commutant of that subset. It is also known as the double commutant or second commutant and is written S^.
The bicommutant is particularly useful in operator theory, due to the von Neumann double commutant theorem, which relates the algebraic and analytic structures of operator algebras. Specifically, it shows that if ''M'' is a unital, self-adjoint operator algebra in the C
*-algebra
''B(H)'', for some Hilbert space ''H'', then the weak closure, strong closure and bicommutant of ''M'' are equal. This tells us that a unital C
*-subalgebra
''M'' of ''B(H)'' is a von Neumann algebra if, and only if, M = M^, and that if not, the von Neumann algebra it generates is M^.
The bicommutant of ''S'' always contains ''S''. So S^ = (S^)^ \subseteq S^. On the other hand, S^ \subseteq (S^)^ = S^. So S^ = S^, i.e. the commutant of the bicommutant of ''S'' is equal to the commutant of ''S''. By induction, we have:
:S^ = S^ = S^ = \ldots = S^ = \ldots
and
:S \subseteq S^ = S^ = S^ = \ldots = S^ = \ldots
for ''n'' > 1.
It is clear that, if ''S''1 and ''S''2 are subsets of a semigroup,
:( S_1 \cup S_2 )' = S_1 ' \cap S_2 ' .
If it is assumed that S_1 = S_1'' \, and S_2 = S_2''\, (this is the case, for instance, for von Neumann algebras), then the above equality gives
:(S_1' \cup S_2')'' = (S_1 '' \cap S_2 '')' = (S_1 \cap S_2)' .
==See also==

* von Neumann double commutant theorem

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Bicommutant」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.