|
In a dynamical system, bistability means the system has two stable equilibrium states. Something that is bistable can be resting in either of two states. These rest states need not be symmetric with respect to stored energy. In terms of potential energy, a bistable system has two local minima of potential energy separated by a peak (local maximum). In a conservative force field, bistability stems from the fact that the potential energy has three equilibrium points. Two of them are minima and one is a maximum. By mathematical arguments, the maximum must lie between the two minima. At rest, a particle will be in one of the minimum equilibrium positions, because that corresponds to the state of lowest energy. The maximum can be visualized as a barrier between them. A system can transition from one state of minimal energy to the other if it is given enough activation energy to penetrate the barrier (compare activation energy and Arrhenius equation for the chemical case). After the barrier has been reached, the system will relax into the other minimum state in a time called the relaxation time. Bistability is widely used in digital electronics devices to store binary data. It is the essential characteristic of the flip-flop, a circuit widely used in latches and some types of semiconductor memory. A bistable device can store one bit of binary data, with one state representing a "0" and the other state a "1". It is also used in relaxation oscillators, multivibrators, and the Schmitt trigger. Optical bistability is an attribute of certain optical devices where two resonant transmissions states are possible and stable, dependent on the input. ==Mathematical modelling== In the mathematical language of dynamic systems analysis, one of the simplest bistable systems is This system describes a ball rolling down a curve with shape , and has three steady-states: , , and . The middle steady-state is unstable, while the other two states are stable. The direction of change of over time depends on the initital condition . If the initial condition is positive (), then the solution approaches 1 over time, but if the initial condition is negative (), then approaches -1 over time. Thus, the dynamics are "bistable". 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Bistability」の詳細全文を読む スポンサード リンク
|