翻訳と辞書
Words near each other
・ Boehm House
・ Boehm syndrome
・ Boehm system
・ Boehm system (clarinet)
・ Boehm's bush squirrel
・ Boehm's gerbil
・ Boehm-Boteler baronets
・ Boehme's giant day gecko
・ Boehmeria
・ Boehmeria australis
・ Boehmeria calophleba
・ Boehmeria cylindrica
・ Boehmeria jamaicensis
・ Boehmeria macrophylla
・ Boehmeria platyphylla
Boehmians
・ Boehmite
・ Boehringer
・ Boehringer Ingelheim
・ Boehringer Laboratories
・ Boeil-Bezing
・ Boeill Creek, New South Wales
・ Boeing
・ Boeing 247
・ Boeing 2707
・ Boeing 307 Stratoliner
・ Boeing 314 Clipper
・ Boeing 367
・ Boeing 367-80
・ Boeing 377 Stratocruiser


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Boehmians : ウィキペディア英語版
Boehmians

In mathematics, Boehmians are objects obtained by an abstract algebraic construction of "quotients of sequences." The original construction was motivated by regular operators introduced by T. K. Boehme. Regular operators are a subclass of Mikusiński operators, that are defined as equivalence classes of convolution quotients of functions on [0,\infty ). The original construction of Boehmians gives us a space of generalized functions that includes all regular operators and has the algebraic character of convolution quotients. On the other hand, it includes all distributions eliminating the restriction of regular operators to [0,\infty ).
Since the Boehmians were introduced in 1981, the framework of Boehmians has been used to define a variety of spaces of generalized functions on \mathbb^N and generalized integral transforms on those spaces. It was also applied to function spaces on other domains, like locally compact groups and manifolds.
== The general construction of Boehmians ==

Let X be an arbitrary nonempty set and let G be a commutative semigroup acting on X. Let \Delta be a collection of sequences of elements of G such that the following two conditions are satisfied:
(1) If (\phi_n), (\psi_n) \in \Delta, then (\phi_n\psi_n) \in \Delta,
(2) If x,y\in X and \phi_n x = \phi_n y for some (\phi_n) \in \Delta and all n\in\mathbb, then x=y.
Now we define a set of pairs of sequences:
\mathcal = \ \}.
In \mathcal we introduce an equivalence relation:
((x_n),(\phi_n)) ~ ((y_n),(\psi_n)) if \phi_m y_n =\psi_n x_m \text m, n\in \mathbb .
The space of Boehmians \mathcal (X,\Delta ) is the space of equivalence classes of \mathcal, that is \mathcal (X,\Delta )=\mathcal/~.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Boehmians」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.