|
Burnishing is the plastic deformation of a surface due to sliding contact with another object. Visually, burnishing smears the texture of a rough surface and makes it shinier. Burnishing may occur on any sliding surface if the contact stress locally exceeds the yield strength of the material. ==Mechanics== To understand burnishing, first look at the simple case of a hardened ball on a flat plate. If the ball is pressed directly into the plate, stresses develop in both objects around the area where they contact. As this normal force increases, both the ball and the plate's surface deform. The deformation caused by the hardened ball is different depending on the magnitude of the force pressing against it. If the force on it is small, when the force is released both the ball and plate's surface will return to their original, undeformed shape. In this case, the stresses in the plate are always less than the yield strength of the material, so the deformation is purely elastic. Since it was given that the flat plate is softer than the ball, the plate's surface will always deform more. (Note 1: this is not necessarily true. For instance: if both items are steel, hardened steel has the same Young's Modulus as soft steel.) If a larger force is used, there will also be plastic deformation and the plate's surface will be permanently altered. (Note 2: In this situation, hardness ''does'' play a role, as increasing hardness will delay plastic deformation.) A bowl-shaped indentation will be left behind, surrounded by a ring of raised material that was displaced by the ball. The stresses between the ball and the plate are described in more detail by Hertzian stress theory. Now consider what happens if the external force on the ball drags it across the plate. In this case, the force on the ball can be decomposed into two component forces: one normal to the plate's surface, pressing it in, and the other tangential, dragging it along. As the tangential component is increased, the ball will start to slide along the plate. At the same time, the normal force will deform both objects, just as with the static situation. If the normal force is low, the ball will rub against the plate but not permanently alter its surface. The rubbing action will create friction and heat, but it will not leave a mark on the plate. However, as the normal force increases, eventually the stresses in the plate's surface will exceed its yield strength. When this happens the ball will plow through the surface and create a trough behind it. The plowing action of the ball is burnishing. Burnishing also occurs when the ball can rotate, as would happen in the above scenario if another flat plate was brought down from above to induce downwards loading, and at the same time to cause rotation and translation of the ball, or in the case of a ball bearing Burnishing also occurs on surfaces that conform to each other, such as between two flat plates, but it happens on a microscopic scale. Even the smoothest of surfaces will have imperfections if viewed at a high enough magnification. The imperfections that extend above the general form of a surface are called asperities, and they can plow material on another surface just like the ball dragging along the plate. The combined effect of many of these asperities produce the smeared texture that is associated with burnishing. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Burnishing (metal)」の詳細全文を読む スポンサード リンク
|