翻訳と辞書
Words near each other
・ Buxton (surname)
・ Buxton Advertiser
・ Buxton baronets
・ Buxton Blue
・ Buxton Brothers Boulevard
・ Butyrophilin, subfamily 3, member A1
・ Butyrskaya (Moscow Metro)
・ Butyrsky
・ Butyrsky (rural locality)
・ Butyrsky District
・ Butyryl chloride
・ Butyryl phosphate
・ Butyryl-CoA
・ Butyryl-CoA dehydrogenase
・ Butyrylcholine
Butyrylcholinesterase
・ Butz
・ Butz Aquino
・ Butz Peters
・ Butz-Choquin
・ Butzbach
・ Butzbach station
・ Butzberg, U.S. Virgin Islands
・ Butzel Long
・ Butzer (surname)
・ Butzner Corner, Virginia
・ Butzow
・ Butztown, Pennsylvania
・ Buu
・ Buu-Yao District


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Butyrylcholinesterase : ウィキペディア英語版
Butyrylcholinesterase

Butyrylcholinesterase (HGNC symbol BCHE), also known as BChE, BuChE, pseudocholinesterase, or plasma cholinesterase, is a nonspecific cholinesterase enzyme that hydrolyses many different choline-based esters. In humans, it is made in the liver, found mainly in blood plasma, and encoded by the ''BCHE'' gene.
It is very similar to the neuronal acetylcholinesterase, which is also known as RBC or erythrocyte cholinesterase.〔 The term "serum cholinesterase" is generally used in reference to a clinical test that reflects levels of both of these enzymes in the blood.〔 Assay of butyrylcholinesterase activity in plasma can be used as a liver function test as both hypercholinesterasemia and hypocholinesterasemia indicate pathological processes.
Butyrylcholine is a synthetic compound that does not occur in the body naturally. It is used as a tool to distinguish between acetylcholinesterase and butyrylcholinesterase.
==Clinical significance==
Pseudocholinesterase deficiency results in delayed metabolism of only a few compounds of clinical significance, including the following: succinylcholine, mivacurium, procaine, heroin, and cocaine. Of these, its most clinically important substrate is the depolarizing neuromuscular blocking agent, succinylcholine, which the pseudocholinesterase enzyme hydrolyzes to succinylmonocholine and then to succinic acid.

In individuals with normal plasma levels of normally functioning pseudocholinesterase enzyme, hydrolysis and inactivation of approximately 90-95% of an intravenous dose of succinylcholine occurs before it reaches the neuromuscular junction. The remaining 5-10% of the succinylcholine dose acts as an acetylcholine receptor agonist at the neuromuscular junction, causing prolonged depolarization of the postsynaptic junction of the motor-end plate. This depolarization initially triggers fasciculation of skeletal muscle. As a result of prolonged depolarization, endogenous acetylcholine released from the presynaptic membrane of the motor neuron does not produce any additional change in membrane potential after binding to its receptor on the myocyte. Flaccid paralysis of skeletal muscles develops within 1 minute. In normal subjects, skeletal muscle function returns to normal approximately 5 minutes after a single bolus injection of succinylcholine as it passively diffuses away from the neuromuscular junction. Pseudocholinesterase deficiency can result in higher levels of intact succinylcholine molecules reaching receptors in the neuromuscular junction, causing the duration of paralytic effect to continue for as long as 8 hours. This condition is recognized clinically when paralysis of the respiratory and other skeletal muscles fails to spontaneously resolve after succinylcholine is administered as an adjunctive paralytic agent during anesthesia procedures. In such cases respiratory assistance is required.
In 2008, an experimental new drug was discovered for the potential treatment of cocaine abuse and overdose based on the pseudocholiesterase structure. It was shown to remove cocaine from the body 2000 times as fast as the natural form of BChE. Studies in rats have shown that the drug prevented convulsions and death when administered cocaine overdoses. This enzyme also metabolizes succinylcholine which accounts for its rapid degradation in the liver and plasma. There may be genetic variability in the kinetics of this enzyme that can lead to prolonged muscle blockade and potentially dangerous respiratory depression that needs to be treated with assisted ventilation.
Mutant alleles at the BCHE locus are responsible for suxamethonium sensitivity. Homozygous persons sustain prolonged apnea after administration of the muscle relaxant suxamethonium in connection with surgical anesthesia. The activity of pseudocholinesterase in the serum is low and its substrate behavior is atypical. In the absence of the relaxant, the homozygote is at no known disadvantage.〔(【引用サイトリンク】 url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=590 )
Finally, pseudocholinesterase metabolism of procaine results in formation of paraaminobenzoic acid (PABA). If the patient receiving procaine is on sulfonamide antibiotics such as bactrim the antibiotic effect will be antagonized by providing a new source of PABA to the microbe for subsequent synthesis of folic acid.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Butyrylcholinesterase」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.