翻訳と辞書
Words near each other
・ Centrosome
・ Centrosome cycle
・ Centrospermae
・ Centrostegia
・ Centrostephanus asteriscus
・ Centrostephanus besnardi
・ Centrostephanus coronatus
・ Centrostephanus longispinus
・ Centrostephanus nitidus
・ Centrostephanus rodgersii
・ Centrostephanus rubricingulus
・ Centrostephanus sylviae
・ Centrostephanus tenuispinus
・ Centrostigma
・ Centrosymmetric matrix
Centrosymmetry
・ Centrotherm Photovoltaics
・ Centrotus
・ Centrotus cornutus
・ Centrovarioplana tenuis
・ Centroxena
・ Centrozoon
・ Centrs, Riga
・ Centru (development region)
・ Centru Nou, Satu Mare
・ Centru, Cluj-Napoca
・ Centrul Civic
・ Centrul Național Media
・ Centrum
・ Centrum (arts organization)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Centrosymmetry : ウィキペディア英語版
Centrosymmetry

In crystallography, a point group which contains an inversion center as one of its symmetry elements is centrosymmetric. In such a point group, for every point (x, y, z) in the unit cell there is an indistinguishable point (-x, -y, -z). Such point groups are also said to have ''inversion ''. Point reflection is a similar term used in geometry.
Crystals with an inversion center cannot display certain properties, such as the piezoelectric effect.
The following space groups have inversion symmetry: the triclinic space group 2, the monoclinic 10-15, the orthorhombic 47-74, the tetragonal 83-88 and 123-142, the trigonal 147, 148 and 162-167, the hexagonal 175, 176 and 191-194, the cubic 200-206 and 221-230.
Point groups lacking an inversion center (non-centrosymmetric) are further divided into ''polar'' and ''chiral'' types. A chiral point group is one without any rotoinversion symmetry elements. ''Rotoinversion'' (also called an 'inversion axis') is rotation followed by inversion; for example, a mirror reflection corresponds to a twofold rotoinversion. Chiral point groups must therefore only contain (purely) rotational symmetry. These arise from the crystal point groups 1, 2, 3, 4, 6, 222, 422, 622, 32, 23, and 432. Chiral molecules such as proteins crystallize in chiral point groups.
The term polar is often used for those point groups which are neither centrosymmetric nor chiral. However, the term is more correctly used for any point group containing a unique anisotropic axis. These occur in crystal point groups 1, 2, 3, 4, 6, m, mm2, 3m, 4mm, and 6mm. Thus some chiral space groups are also polar.
==See also==

* Centrosymmetric matrix

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Centrosymmetry」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.