翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Chern-Simons : ウィキペディア英語版
Chern–Simons form
In mathematics, the Chern–Simons forms are certain secondary characteristic classes. They have been found to be of interest in gauge theory, and they (especially the 3-form) define the action of Chern–Simons theory. The theory is named for Shiing-Shen Chern and James Harris Simons, co-authors of a 1974 paper entitled "Characteristic Forms and Geometric Invariants," from which the theory arose. See
==Definition==
Given a manifold and a Lie algebra valued 1-form, \bold over it, we can define a family of p-forms:
In one dimension, the Chern–Simons 1-form is given by
: (\bold ).
In three dimensions, the Chern–Simons 3-form is given by
: \left(\bold\wedge\bold-\frac\bold\wedge\bold\wedge\bold\right ).
In five dimensions, the Chern–Simons 5-form is given by
: \left(\bold\wedge\bold\wedge\bold-\frac\bold\wedge\bold\wedge\bold\wedge\bold +\frac\bold\wedge\bold\wedge\bold\wedge\bold\wedge\bold \right )
where the curvature F is defined as
:\bold = d\bold+\bold\wedge\bold.
The general Chern–Simons form \omega_ is defined in such a way that
:d\omega_= \left( F^ \right),
where the wedge product is used to define ''Fk''. The right-hand side of this equation is proportional to the ''k''-th Chern character of the connection \bold.
In general, the Chern–Simons p-form is defined for any odd ''p''. See also gauge theory for the definitions. Its integral over a ''p''-dimensional manifold is a global geometric invariant, and is typically gauge invariant modulo addition of an integer.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Chern–Simons form」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.