翻訳と辞書
Words near each other
・ COBS
・ Cobscook Bay
・ Cobscook Bay State Park
・ Cobstone Windmill
・ Cobthach Cóel Breg
・ Cobthach mac Gabran
・ Cobthorn Trust
・ COBU
・ Cobubatha
・ COBOL
・ COBOL (disambiguation)
・ COBOL on Wheelchair
・ COBOL ReSource
・ Cobonne
・ CoBoosting
Cobordism
・ Cobordism hypothesis
・ Cobordism ring
・ Cobori Creek
・ Coborn
・ Coborn Road railway station
・ Cobos de Cerrato
・ Cobos de Fuentidueña
・ Cobos, Salta
・ Cobosella
・ Cobosesta
・ Cobosietta
・ Cobot
・ Cobourg
・ Cobourg and Peterborough Railway


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Cobordism : ウィキペディア英語版
Cobordism

In mathematics, cobordism is a fundamental equivalence relation on the class of compact manifolds of the same dimension, set up using the concept of the boundary (french ''bord'', giving ''cobordism'') of a manifold. Two manifolds of the same dimension are ''cobordant'' if their disjoint union is the ''boundary'' of a compact manifold one dimension higher.
The boundary of an (''n'' + 1)-dimensional manifold ''W'' is an ''n''-dimensional manifold ∂''W'' that is closed, i.e., with empty boundary. In general, a closed manifold need not be a boundary: cobordism theory is the study of the difference between all closed manifolds and those that are boundaries. The theory was originally developed for smooth manifolds (i.e., differentiable), but there are now also versions for piecewise-linear and topological manifolds.
A ''cobordism'' between manifolds ''M'' and ''N'' is a compact manifold ''W'' whose boundary is the disjoint union of ''M'' and ''N'', \partial W=M \sqcup N.
Cobordisms are studied both for the equivalence relation that they generate, and as objects in their own right. Cobordism is a much coarser equivalence relation than diffeomorphism or homeomorphism of manifolds, and is significantly easier to study and compute. It is not possible to classify manifolds up to diffeomorphism or homeomorphism in dimensions ≥ 4 – because the word problem for groups cannot be solved – but it is possible to classify manifolds up to cobordism. Cobordisms are central objects of study in geometric topology and algebraic topology. In geometric topology, cobordisms are intimately connected with Morse theory, and ''h''-cobordisms are fundamental in the study of high-dimensional manifolds, namely surgery theory. In algebraic topology, cobordism theories are fundamental extraordinary cohomology theories, and categories of cobordisms are the domains of topological quantum field theories.
== Definition ==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Cobordism」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.