翻訳と辞書 |
Coimage In algebra, the coimage of a homomorphism :''f'': ''A'' → ''B'' is the quotient :coim ''f'' = A/ker ''f'' of domain and kernel. The coimage is canonically isomorphic to the image by the first isomorphism theorem, when that theorem applies. More generally, in category theory, the coimage of a morphism is the dual notion of the image of a morphism. If ''f'' : ''X'' → ''Y'', then a coimage of ''f'' (if it exists) is an epimorphism ''c'' : ''X'' → ''C'' such that #there is a map ''f''''c'' : ''C'' → ''Y'' with ''f'' = ''f''''c'' ∘ ''c'', #for any epimorphism ''z'' : ''X'' → ''Z'' for which there is a map ''f''''z'' : ''Z'' → ''Y'' with ''f'' = ''f''''z'' ∘ ''z'', there is a unique map π : ''Z'' → ''C'' such that both ''c'' = π ∘ ''z'' and ''f''''z'' = ''f''''c'' ∘ π. ==See also==
*Quotient object *Cokernel
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Coimage」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|