翻訳と辞書
Words near each other
・ Commutant lifting theorem
・ Commutant-associative algebra
・ Commutation (neurophysiology)
・ Commutation Act
・ Commutation cell
・ Commutation matrix
・ Commutation test
・ Commutation theorem
・ Commutative algebra
・ Commutative diagram
・ Commutative non-associative magmas
・ Commutative property
・ Commutative ring
・ Commutative ring spectrum
・ Commutativity of conjunction
Commutator
・ Commutator (electric)
・ Commutator collecting process
・ Commutator subgroup
・ Commutator subspace
・ Commute
・ Commuted cash value
・ Commuter (Iarnród Éireann)
・ Commuter Aircraft Corporation CAC-100
・ Commuter Airlines
・ Commuter assistance
・ Commuter Cars
・ Commuter Cars Tango
・ Commuter Challenge
・ Commuter Husbands


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Commutator : ウィキペディア英語版
Commutator

In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory.
== Group theory ==
The commutator of two elements, ''g'' and ''h'', of a group ''G'', is the element
:(''h'' ) = ''g''−1''h''−1''gh''.
It is equal to the group's identity if and only if ''g'' and ''h'' commute (i.e., if and only if ''gh'' = ''hg''). The subgroup of ''G'' generated by all commutators is called the ''derived group'' or the ''commutator subgroup'' of ''G''. Note that one must consider the subgroup generated by the set of commutators because in general the set of commutators is not closed under the group operation. Commutators are used to define nilpotent and solvable groups.
The above definition of the commutator is used by some group theorists, as well as throughout this article. However, many other group theorists define the commutator as
:(''h'' ) = ''ghg''−1''h''−1.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Commutator」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.