翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Compactum : ウィキペディア英語版
Compact space

In mathematics, and more specifically in general topology, compactness is a property that generalizes the notion of a subset of Euclidean space being closed (that is, containing all its limit points) and bounded (that is, having all its points lie within some fixed distance of each other). Examples include a closed interval, a rectangle, or a finite set of points. This notion is defined for more general topological spaces than Euclidean space in various ways.
One such generalization is that a space is ''sequentially'' compact if any infinite sequence of points sampled from the space must frequently (infinitely often) get arbitrarily close to some point of the space. An equivalent definition is that every sequence of points must have an infinite subsequence that converges to some point of the space. The Heine-Borel theorem states that a subset of Euclidean space is compact in this sequential sense if and only if it is closed and bounded. Thus, if one chooses an infinite number of points in the ''closed'' unit interval some of those points must get arbitrarily close to some real number in that space. For instance, some of the numbers accumulate to 0 (others accumulate to 1). The same set of points would not accumulate to any point of the ''open'' unit interval ; so the open unit interval is not compact. Euclidean space itself is not compact since it is not bounded. In particular, the sequence of points has no subsequence that converges to any given real number.
Apart from closed and bounded subsets of Euclidean space, typical examples of compact spaces include spaces consisting not of geometrical points but of functions. The term ''compact'' was introduced into mathematics by Maurice Fréchet in 1904 as a distillation of this concept. Compactness in this more general situation plays an extremely important role in mathematical analysis, because many classical and important theorems of 19th century analysis, such as the extreme value theorem, are easily generalized to this situation. A typical application is furnished by the Arzelà–Ascoli theorem or the Peano existence theorem, in which one is able to conclude the existence of a function with some required properties as a limiting case of some more elementary construction.
Various equivalent notions of compactness, including sequential compactness and limit point compactness, can be developed in general metric spaces. In general topological spaces, however, different notions of compactness are not necessarily equivalent. The most useful notion, which is the standard definition of the unqualified term ''compactness'', is phrased in terms of the existence of finite families of open sets that "cover" the space in the sense that each point of the space must lie in some set contained in the family. This more subtle notion, introduced by Pavel Alexandrov and Pavel Urysohn in 1929, exhibits compact spaces as generalizations of finite sets. In spaces that are compact in this sense, it is often possible to patch together information that holds locally—that is, in a neighborhood of each point—into corresponding statements that hold throughout the space, and many theorems are of this character.
The term compact set is sometimes a synonym for compact space, but usually refers to a compact subspace of a topological space.
== Historical development ==
In the 19th century, several disparate mathematical properties were understood that would later be seen as consequences of compactness. On the one hand, Bernard Bolzano (1817) had been aware that any bounded sequence of points (in the line or plane, for instance) has a subsequence that must eventually get arbitrarily close to some other point, called a limit point. Bolzano's proof relied on the method of bisection: the sequence was placed into an interval that was then divided into two equal parts, and a part containing infinitely many terms of the sequence was selected. The process could then be repeated by dividing the resulting smaller interval into smaller and smaller parts until it closes down on the desired limit point. The full significance of Bolzano's theorem, and its method of proof, would not emerge until almost 50 years later when it was rediscovered by Karl Weierstrass.〔; 〕
In the 1880s, it became clear that results similar to the Bolzano–Weierstrass theorem could be formulated for spaces of functions rather than just numbers or geometrical points. The idea of regarding functions as themselves points of a generalized space dates back to the investigations of Giulio Ascoli and Cesare Arzelà. The culmination of their investigations, the Arzelà–Ascoli theorem, was a generalization of the Bolzano–Weierstrass theorem to families of continuous functions, the precise conclusion of which was that it was possible to extract a uniformly convergent sequence of functions from a suitable family of functions. The uniform limit of this sequence then played precisely the same role as Bolzano's "limit point". Towards the beginning of the twentieth century, results similar to that of Arzelà and Ascoli began to accumulate in the area of integral equations, as investigated by David Hilbert and Erhard Schmidt. For a certain class of Green functions coming from solutions of integral equations, Schmidt had shown that a property analogous to the Arzelà–Ascoli theorem held in the sense of mean convergence—or convergence in what would later be dubbed a Hilbert space. This ultimately led to the notion of a compact operator as an offshoot of the general notion of a compact space. It was Maurice Fréchet who, in 1906, had distilled the essence of the Bolzano–Weierstrass property and coined the term ''compactness'' to refer to this general phenomenon (he used the term already in his 1904 paper〔Frechet, M. 1904. Generalisation d'un theorem de Weierstrass. Analyse Mathematique.〕 which led to the famous 1906 thesis) .
However, a different notion of compactness altogether had also slowly emerged at the end of the 19th century from the study of the continuum, which was seen as fundamental for the rigorous formulation of analysis. In 1870, Eduard Heine showed that a continuous function defined on a closed and bounded interval was in fact uniformly continuous. In the course of the proof, he made use of a lemma that from any countable cover of the interval by smaller open intervals, it was possible to select a finite number of these that also covered it. The significance of this lemma was recognized by Émile Borel (1895), and it was generalized to arbitrary collections of intervals by Pierre Cousin (1895) and Henri Lebesgue (1904). The Heine–Borel theorem, as the result is now known, is another special property possessed by closed and bounded sets of real numbers.
This property was significant because it allowed for the passage from local information about a set (such as the continuity of a function) to global information about the set (such as the uniform continuity of a function). This sentiment was expressed by , who also exploited it in the development of the integral now bearing his name. Ultimately the Russian school of point-set topology, under the direction of Pavel Alexandrov and Pavel Urysohn, formulated Heine–Borel compactness in a way that could be applied to the modern notion of a topological space. showed that the earlier version of compactness due to Fréchet, now called (relative) sequential compactness, under appropriate conditions followed from the version of compactness that was formulated in terms of the existence of finite subcovers. It was this notion of compactness that became the dominant one, because it was not only a stronger property, but it could be formulated in a more general setting with a minimum of additional technical machinery, as it relied only on the structure of the open sets in a space.


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Compact space」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.