翻訳と辞書
Words near each other
・ Deadly Awards 1997
・ Deadly Awards 1998
・ Deadly Awards 1999
・ Deadly Awards 2000
・ Deadly Awards 2001
・ Deadly Awards 2002
・ Deadly Awards 2003
・ Deadly Awards 2004
・ Deadly Awards 2005
・ Dead Wrong
・ Dead Wrong (comics)
・ Dead Wrong (song)
・ Dead Yuppies
・ Dead zone
・ Dead Zone (album)
Dead zone (ecology)
・ Dead Zone (video game)
・ Dead, Everywhere
・ Dead-ball era
・ Dead-beat control
・ Dead-cakes
・ Dead-end elimination
・ Dead-end job
・ Dead-end tower
・ Dead-ice
・ Dead-man's vigilance device
・ DEAD/DEAH box helicase
・ Dead@17
・ Deadache
・ DeadAIM


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Dead zone (ecology) : ウィキペディア英語版
Dead zone (ecology)

Dead zones are hypoxic (low-oxygen) areas in the world's oceans and large lakes, caused by "excessive nutrient pollution from human activities coupled with other factors that deplete the oxygen required to support most marine life in bottom and near-bottom water. (NOAA)." In the 1970s oceanographers began noting increased instances of dead zones. These occur near inhabited coastlines, where aquatic life is most concentrated. (The vast middle portions of the oceans, which naturally have little life, are not considered "dead zones".)
In March 2004, when the recently established UN Environment Programme published its first Global Environment Outlook Year Book (''GEO Year Book 2003''), it reported 146 dead zones in the world's oceans where marine life could not be supported due to depleted oxygen levels. Some of these were as small as a square kilometre (0.4 mi²), but the largest dead zone covered 70,000 square kilometres (27,000 mi²). A 2008 study counted 405 dead zones worldwide.〔〔
==Causes==

Aquatic and marine dead zones can be caused by an increase in chemical nutrients (particularly nitrogen and phosphorus) in the water, known as eutrophication. These chemicals are the fundamental building blocks of single-celled, plant-like organisms that live in the water column, and whose growth is limited in part by the availability of these materials. Eutrophication can lead to rapid increases in the density of certain types of these phytoplankton, a phenomenon known as an algal bloom.
Limnologist Dr. David Schindler, whose research at the Experimental Lakes Area led to the banning of harmful phosphates in detergents, warned about algal blooms and dead zones,
"The fish-killing blooms that devastated the Great Lakes in the 1960s and 1970s haven't gone away; they've moved west into an arid world in which people, industry, and agriculture are increasingly taxing the quality of what little freshwater there is to be had here....This isn't just a prairie problem. Global expansion of dead zones caused by algal blooms is rising rapidly...(Schindler and Vallentyne 2008) "〔

The major groups of algae are Cyanobacteria, Green Algae, Dinoflagellates, Coccolithophores and Diatom Algae. Increase in input of nitrogen and phosphorus generally causes Cyanobacteria to bloom and this causes Dead Zones. Cyanobacteria are not good food for zooplankton and fish and hence accumulate in water, die, and then decompose. Other algae are consumed and hence do not accumulate to the same extent as Cyanobacteria.〔( "Whole Lake Experiment, Ford Lake, Prof Lehman" )〕 Dead zones can be caused by natural and by anthropogenic factors. Use of chemical fertilizers is considered the major human-related cause of dead zones around the world. Natural causes include coastal upwelling and changes in wind and water circulation patterns. Runoff from sewage, urban land use, and fertilizers can also contribute to eutrophication.〔(Corn boom could expand 'dead zone' in Gulf )〕
Notable dead zones in the United States include the northern Gulf of Mexico region,〔 surrounding the outfall of the Mississippi River, and the coastal regions of the Pacific Northwest, and the Elizabeth River in Virginia Beach, all of which have been shown to be recurring events over the last several years.
Additionally, natural oceanographic phenomena can cause deoxygenation of parts of the water column. For example, enclosed bodies of water, such as fjords or the Black Sea, have shallow sills at their entrances, causing water to be stagnant there for a long time. The eastern tropical Pacific Ocean and northern Indian Ocean have lowered oxygen concentrations which are thought to be in regions where there is minimal circulation to replace the oxygen that is consumed (e.g. Pickard & Emery 1982, p 47). These areas are also known as oxygen minimum zones (OMZ). In many cases, OMZs are permanent or semipermanent areas.
Remains of organisms found within sediment layers near the mouth of the Mississippi River indicate four hypoxic events before the advent of artificial fertilizer. In these sediment layers, anoxia-tolerant species are the most prevalent remains found. The periods indicated by the sediment record correspond to historic records of high river flow recorded by instruments at Vicksburg, Mississippi.
Changes in ocean circulation triggered by ongoing climate change could also add or magnify other causes of oxygen reductions in the ocean

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Dead zone (ecology)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.