|
In mathematics, a subset of a topological space is said to be dense-in-itself if contains no isolated points. Every dense-in-itself closed set is perfect. Conversely, every perfect set is dense-in-itself. A simple example of a set which is dense-in-itself but not closed (and hence not a perfect set) is the subset of irrational numbers (considered as a subset of the real numbers). This set is dense-in-itself because every neighborhood of an irrational number contains at least one other irrational number . On the other hand, this set of irrationals is not closed because every rational number lies in its closure. For similar reasons, the set of rational numbers (also considered as a subset of the real numbers) is also dense-in-itself but not closed. The above examples, the irrationals and the rationals, are also dense sets in their topological space, namely . As an example that is dense-in-itself but not dense in its topological space, consider . This set is not dense in but is dense-in-itself. ==See also== * Nowhere dense set * Dense order * Perfect space * Glossary of topology 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Dense-in-itself」の詳細全文を読む スポンサード リンク
|