|
Detonation () is a type of combustion involving a supersonic exothermic front accelerating through a medium that eventually drives a shock front propagating directly in front of it. Detonations occur in both conventional solid and liquid explosives, as well as in reactive gases. The velocity of detonation in solid and liquid explosives is much higher than that in gaseous ones, which allows the wave system to be observed with greater detail (higher resolution). An extraordinary variety of fuels may occur as gases, droplet fogs, or dust suspensions. Oxidants include halogens, ozone, hydrogen peroxide and oxides of nitrogen. Gaseous detonations are often associated with a mixture of fuel and oxidant in a composition somewhat below conventional flammability ratios. They happen most often in confined systems, but they sometimes occur in large vapor clouds. Other materials, such as acetylene, ozone and hydrogen peroxide are detonable in the absence of oxygen; a more complete list is given by both Stull and Bretherick. Processes involved in the transition between deflagration and detonation are covered thoroughly for gases by Nettleton. ==Theories== The simplest theory to predict the behaviour of detonations in gases is known as Chapman-Jouguet (CJ) theory, developed around the turn of the 20th century. This theory, described by a relatively simple set of algebraic equations, models the detonation as a propagating shock wave accompanied by exothermic heat release. Such a theory confines the chemistry and diffusive transport processes to an infinitely thin zone. A more complex theory was advanced during World War II independently by Zel'dovich, von Neumann, and W. Doering. This theory, now known as ZND theory, admits finite-rate chemical reactions and thus describes a detonation as an infinitely thin shock wave followed by a zone of exothermic chemical reaction. With a reference frame of a stationary shock, the following flow is subsonic, so that an acoustic reaction zone follows immediately behind the lead front, the Chapman-Jouguet condition.〔 Continued in Continued in 〕 There is also some evidence that the reaction zone is semi-metallic in some explosives. Both theories describe one-dimensional and steady wave fronts. However, in the 1960s, experiments revealed that gas-phase detonations were most often characterized by unsteady, three-dimensional structures, which can only in an averaged sense be predicted by one-dimensional steady theories. Indeed, such waves are quenched as their structure is destroyed. The Wood-Kirkwood detonation theory can correct for some of these limitations. Experimental studies have revealed some of the conditions needed for the propagation of such fronts. In confinement, the range of composition of mixes of fuel and oxidant and self-decomposing substances with inerts are slightly below the flammability limits and for spherically expanding fronts well below them. The influence of increasing the concentration of diluent on expanding individual detonation cells has been elegantly demonstrated. Similarly their size grows as the initial pressure falls. Since cell widths must be matched with minimum dimension of containment, any wave overdriven by the initiator will be quenched. Mathematical modeling has steadily advanced to predicting the complex flow fields behind shocks inducing reactions. To date, none has adequately described how structure is formed and sustained behind unconfined waves. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Detonation」の詳細全文を読む スポンサード リンク
|