|
In telecommunication and radio communication, spread-spectrum techniques are methods by which a signal (e.g. an electrical, electromagnetic, or acoustic signal) generated with a particular bandwidth is deliberately spread in the frequency domain, resulting in a signal with a wider bandwidth. These techniques are used for a variety of reasons, including the establishment of secure communications, increasing resistance to natural interference, noise and jamming, to prevent detection, and to limit power flux density (e.g. in satellite downlinks). ==Spread-spectrum telecommunications== This is a technique in which a telecommunication signal is transmitted on a bandwidth considerably larger than the frequency content of the original information. Frequency hopping is a basic modulation technique used in spread spectrum signal transmission. Spread-spectrum telecommunications is a signal structuring technique that employs direct sequence, frequency hopping, or a hybrid of these, which can be used for multiple access and/or multiple functions. This technique decreases the potential interference to other receivers while achieving privacy. Spread spectrum generally makes use of a sequential noise-like signal structure to spread the normally narrowband information signal over a relatively wideband (radio) band of frequencies. The receiver correlates the received signals to retrieve the original information signal. Originally there were two motivations: either to resist enemy efforts to jam the communications (anti-jam, or AJ), or to hide the fact that communication was even taking place, sometimes called low probability of intercept (LPI). Frequency-hopping spread spectrum (FHSS), direct-sequence spread spectrum (DSSS), time-hopping spread spectrum (THSS), chirp spread spectrum (CSS), and combinations of these techniques are forms of spread spectrum. Each of these techniques employs pseudorandom number sequences — created using pseudorandom number generators — to determine ''and'' control the spreading pattern of the signal across the allocated bandwidth. Ultra-wideband (UWB) is another modulation technique that accomplishes the same purpose, based on transmitting short duration pulses. Wireless standard IEEE 802.11 uses either FHSS or DSSS in its radio interface. * Techniques known since the 1940s and used in military communication systems since the 1950s "spread" a radio signal over a wide frequency range several magnitudes higher than minimum requirement. The core principle of spread spectrum is the use of noise-like carrier waves, and, as the name implies, bandwidths much wider than that required for simple point-to-point communication at the same data rate. * Resistance to jamming (interference). DS (direct sequence) is good at resisting continuous-time narrowband jamming, while FH (frequency hopping) is better at resisting pulse jamming. In DS systems, narrowband jamming affects detection performance about as much as if the amount of jamming power is spread over the whole signal bandwidth, when it will often not be much stronger than background noise. By contrast, in narrowband systems where the signal bandwidth is low, the received signal quality will be severely lowered if the jamming power happens to be concentrated on the signal bandwidth. * Resistance to eavesdropping. The spreading code (in DS systems) or the frequency-hopping pattern (in FH systems) is often unknown by anyone for whom the signal is unintended, in which case it obscures the signal and reduces the chance of an adversary's making sense of it. Moreover, for a given noise power spectral density (PSD), spread-spectrum systems require the same amount of energy per bit before spreading as narrowband systems and therefore the same amount of power if the bitrate before spreading is the same, but since the signal power is spread over a large bandwidth, the signal PSD is much lower — often significantly lower than the noise PSD — so that the adversary may be unable to determine whether the signal exists at all. However, for mission-critical applications, particularly those employing commercially available radios, spread-spectrum radios do not intrinsically provide adequate security; "...just using spread-spectrum radio itself is not sufficient for communications security". * Resistance to fading. The high bandwidth occupied by spread-spectrum signals offer some frequency diversity, i.e. it is unlikely that the signal will encounter severe multipath fading over its whole bandwidth, and in other cases the signal can be detected using e.g. a Rake receiver. * Multiple access capability, known as code-division multiple access (CDMA) or code-division multiplexing (CDM). Multiple users can transmit simultaneously in the same frequency band as long as they use different spreading codes. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Spread spectrum」の詳細全文を読む スポンサード リンク
|