翻訳と辞書
Words near each other
・ Duonfla
・ Duong Saree
・ Duong Van Mon
・ Duong Vanna
・ Duoni language
・ Duopalatinus
・ Duophonic
・ Duophonic (album)
・ Duophonic Records
・ Duophonique
・ Duoplasmatron
・ Duopoly
・ Duopoly (broadcasting)
・ Duopoly (disambiguation)
・ Duopoly (entertainment company)
Duoprism
・ Duopyramid
・ Duorum in solidum dominium vel possessio esse non potest
・ Duoshan, Lengshuijiang
・ Duospina
・ Duospina abolitor
・ Duospina trichella
・ Duota language
・ Duotang (band)
・ Duoth Koang Rueh Wour
・ Duotian
・ Duotone
・ Duotones
・ Duowei News
・ Duoyuan Global Water


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Duoprism : ウィキペディア英語版
Duoprism

|-
|bgcolor=#e7dcc3|Coxeter-Dynkin diagram||
|-
|bgcolor=#e7dcc3|Cells||p,q-gonal prisms,
q p-gonal prisms
|-
|bgcolor=#e7dcc3|Faces||pq squares,
p q-gons,
q p-gons
|-
|bgcolor=#e7dcc3|Edges||2pq
|-
|bgcolor=#e7dcc3|Vertices||pq
|-
|bgcolor=#e7dcc3|Vertex figure||100px
disphenoid
|-
|bgcolor=#e7dcc3|Symmetry||(), order 4pq
|-
|bgcolor=#e7dcc3|Dual||p,q-duopyramid
|-
|bgcolor=#e7dcc3|Properties||convex, vertex-uniform
|-
|colspan=2| 
|-
|bgcolor=#e7dcc3 colspan=2 align=center|Set of uniform p-p duoprisms
|-
|bgcolor=#e7dcc3|Type||Prismatic uniform 4-polytope
|-
|bgcolor=#e7dcc3|Schläfli symbol||×
|-
|bgcolor=#e7dcc3|Coxeter-Dynkin diagram||
|-
|bgcolor=#e7dcc3|Cells||2p p-gonal prisms
|-
|bgcolor=#e7dcc3|Faces||p2 squares,
2p p-gons
|-
|bgcolor=#e7dcc3|Edges||2p2
|-
|bgcolor=#e7dcc3|Vertices||p2
|-
|bgcolor=#e7dcc3|Symmetry|| = (), order 8p2
|-
|bgcolor=#e7dcc3|Dual||p-p duopyramid
|-
|bgcolor=#e7dcc3|Properties||convex, vertex-uniform, Facet-transitive
|}
In geometry of 4 dimensions or higher, a duoprism is a polytope resulting from the Cartesian product of two polytopes, each of two dimensions or higher. The Cartesian product of an ''n''-polytope and an ''m''-polytope is an (''n''+''m'')-polytope, where ''n'' and ''m'' are 2 (polygon) or higher.
The lowest-dimensional duoprisms exist in 4-dimensional space as 4-polytopes being the Cartesian product of two polygons in 2-dimensional Euclidean space. More precisely, it is the set of points:
:P_1 \times P_2 = \
where ''P1'' and ''P2'' are the sets of the points contained in the respective polygons. Such a duoprism is convex if both bases are convex, and is bounded by prismatic cells.
==Nomenclature==

Four-dimensional duoprisms are considered to be prismatic 4-polytopes. A duoprism constructed from two regular polygons of the same edge length is a uniform duoprism.
A duoprism made of ''n''-polygons and ''m''-polygons is named by prefixing 'duoprism' with the names of the base polygons, for example: a ''triangular-pentagonal duoprism'' is the Cartesian product of a triangle and a pentagon.
An alternative, more concise way of specifying a particular duoprism is by prefixing with numbers denoting the base polygons, for example: 3,5-duoprism for the triangular-pentagonal duoprism.
Other alternative names:
* q-gonal-p-gonal prism
* q-gonal-p-gonal double prism
* q-gonal-p-gonal hyperprism
The term ''duoprism'' is coined by George Olshevsky, shortened from ''double prism''. John Horton Conway proposed a similar name proprism for ''product prism'', a Cartesian product of two or more polytopes of dimension at least two. The duoprisms are proprisms formed from exactly two polytopes.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Duoprism」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.