|
Echinoderm is the common name given to any member of the Phylum Echinodermata (from Ancient Greek, ἐχῖνος, ''echinos'' – "hedgehog" and δέρμα, ''derma'' – "skin")〔(【引用サイトリンク】url=http://www.etymonline.com/index.php?term=echinoderm&allowed_in_frame=0 )〕 of marine animals. The adults are recognizable by their (usually five-point) radial symmetry, and include such well-known animals as starfish, sea urchins, sand dollars, and sea cucumbers, as well as the sea lilies or "stone lilies".〔(【引用サイトリンク】title=Sea Lily )〕 Echinoderms are found at every ocean depth, from the intertidal zone to the abyssal zone. The phylum contains about 7000 living species,〔(【引用サイトリンク】title=Animal Diversity Web - Echinodermata )〕 making it the second-largest grouping of deuterostomes (a superphylum), after the chordates (which include the vertebrates, such as birds, fishes, mammals, and reptiles). Echinoderms are also the largest phylum that has no freshwater or terrestrial (land-based) representatives. Aside from the hard-to-classify ''Arkarua'' (a Precambrian animal with echinoderm-like pentamerous radial symmetry), the first definitive members of the phylum appeared near the start of the Cambrian. The echinoderms are important both biologically and geologically. Biologically, there are few other groupings so abundant in the biotic desert of the deep sea, as well as shallower oceans. The more notably distinct trait, which most echinoderms have, is their remarkable powers of regeneration of tissue, organs, limbs, and of asexual reproduction, and in some cases, complete regeneration from a single limb. Geologically, the value of echinoderms is in their ossified skeletons, which are major contributors to many limestone formations, and can provide valuable clues as to the geological environment. They were the most used species in regenerative research in the 19th and 20th centuries. Further, it is held by some scientists that the radiation of echinoderms was responsible for the Mesozoic Marine Revolution. ==Taxonomy and evolution== Along with the chordates and hemichordates, echinoderms are deuterostomes, one of the two major divisions of the animal kingdom, the other being the protostomes. During the early development of the embryo, in deuterostomes the blastopore (the first opening to form) becomes the anus whereas in the protostomes, it becomes the mouth. In deuterostomes, the mouth develops at a later stage, at the opposite end of the blastula from the blastopore, and a gut forms connecting the two. The larvae of echinoderms have bilateral symmetry but this is lost during metamorphosis when their bodies are reorganised and develop the characteristic radial symmetry of the echinoderm, typically pentamerism. The characteristics of adult echinoderms are the possession of a water vascular system with external tube feet and a calcareous endoskeleton consisting of ossicles connected by a mesh of collagen fibres. There are a total of about 7,000 extant species of echinoderm as well as about 13,000 extinct species. They are found in habitats ranging from shallow intertidal areas to abyssal depths. Two main subdivisions are traditionally recognised: the more familiar motile Eleutherozoa, which encompasses the Asteroidea (starfish, 1,745 recent species), Ophiuroidea (brittle stars, 2,300 species), Echinoidea (sea urchins and sand dollars, 900 species) and Holothuroidea (sea cucumbers, 1,430 species); and the Pelmatozoa, some of which are sessile while others move around. These consist of the Crinoidea (feather stars and sea lilies, 580 species) and the extinct blastoids and Paracrinoids. A fifth class of Eleutherozoa consisting of just three species, the Concentricycloidea (sea daisies), were recently merged into the Asteroidea. The fossil record includes a large number of other classes which do not appear to fall into any extant crown group. All echinoderms are marine and nearly all are benthic. The oldest known echinoderm fossil may be ''Arkarua'' from the Precambrian of Australia. It is a disc-like fossil with radial ridges on the rim and a five-pointed central depression marked with radial lines. However, no stereom or internal structure showing a water vascular system is present and the identification is inconclusive. The first universally accepted echinoderms appear in the Lower Cambrian period, asterozoans appeared in the Ordovician and the crinoids were a dominant group in the Paleozoic.〔 Echinoderms left behind an extensive fossil record.〔 It is hypothesised that the ancestor of all echinoderms was a simple, motile, bilaterally symmetrical animal with a mouth, gut and anus. This ancestral stock adopted an attached mode of life and suspension feeding, and developed radial symmetry as this was more advantageous for such an existence. The larvae of all echinoderms are even now bilaterally symmetrical and all develop radial symmetry at metamorphosis. The starfish and crinoids still attach themselves to the seabed while changing to their adult form.〔Dorit, Walker & Barnes (1991) p. 792–793〕 The first echinoderms later gave rise to free-moving groups. The evolution of endoskeletal plates with stereom structure and of external ciliary grooves for feeding were early echinoderm developments. The Paleozoic echinoderms were globular, attached to the substrate and were orientated with their oral surfaces upwards. The fossil echinoderms had ambulacral grooves extending down the side of the body, fringed on either side by brachioles, structures very similar to the pinnules of a modern crinoid. It seems probable that the mouth-upward orientation is the primitive state and that at some stage, all the classes of echinoderms except the crinoids reversed this to become mouth-downward. Before this happened, the podia probably had a feeding function as they do in the crinoids today. Their locomotor function came later, after the re-orientation of the mouth when the podia were in contact with the substrate for the first time.〔 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Echinoderm」の詳細全文を読む スポンサード リンク
|