|
Ecomechatronics is an engineering approach to developing and applying mechatronical technology in order to reduce the ecological impact and total cost of ownership of machines. It builds upon the integrative approach of mechatronics, but not with the aim of only improving the functionality of a machine. Mechatronics is the multidisciplinary field of science and engineering that merges mechanics, electronics, control theory, and computer science to improve and optimize product design and manufacturing. In ecomechatronics, additionally, functionality should go hand in hand with an efficient use and limited impact on resources. Machine improvements are targeted in 3 key areas: energy efficiency, performance and user comfort (noise & vibrations). == Description == Among policy makers and manufacturing industries there is a growing awareness of the scarcity of resources and the need for sustainable development. This results in new regulations with respect to the design of machines (e.g. European Ecodesign Directive 2009/125/EC) and to a paradigm shift in the global machines market: "instead of maximum profit from minimum capital, maximum added value must be generated from minimal resources".〔(【引用サイトリンク】url=http://www.fraunhofer.de/en/research-topics/production-and-environment/production-saves-energy_2.html )〕 Manufacturing industries increasingly require high performance machines that use resources (energy, consumables) economically in a human-centered production. Machine building companies and original equipment manufacturers are thus urged to respond to this market demand with a new generation of high performance machines with higher energy efficiency and user comfort. A reduction of the energy consumption lowers energy costs and reduces environmental impact. Typically more than 80% of the total-life-cycle impact of a machine is attributed to its energy consumption during the use phase. Therefore improving a machine's energy efficiency is the most effective way of reducing its environmental impact. Performance quantifies how well a machine executes its function and is typically related to productivity, precision and availability. User comfort is related to the exposure of operators and the environment to noise & vibrations due to machine operation. Since energy efficiency, performance and noise & vibrations are coupled in a machine they need to be addressed in an integrated way in the design phase. Example of the interrelation between the 3 key areas: with increasing machine speed typically the machine’s productivity increases, but energy consumption will increase as well and machine vibrations may grow such that machine accuracy (e.g. positioning accuracy) and availability (due to downtime and maintenance) decrease. Ecomechatronical design deals with the trade-off between these key areas. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Ecomechatronics」の詳細全文を読む スポンサード リンク
|