翻訳と辞書
Words near each other
・ Einstein and Eddington
・ Einstein and Religion
・ Einstein Bros. Bagels
・ Einstein coefficients
・ Einstein Cross
・ Einstein effect
・ Einstein family
・ Einstein field equations
・ Einstein force
・ Einstein function
・ Einstein Gargoyle
・ Einstein Girl
・ Einstein group
・ Einstein High School
・ Einstein Kristiansen
Einstein manifold
・ Einstein Medical Center
・ Einstein metro station
・ Einstein notation
・ Einstein Observatory
・ Einstein on the Beach
・ Einstein on the Beach (For an Eggman)
・ Einstein on the Lake
・ Einstein Papers Project
・ Einstein Prize
・ Einstein Prize (APS)
・ Einstein Prize for Laser Science
・ Einstein problem
・ Einstein protocol
・ Einstein radius


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Einstein manifold : ウィキペディア英語版
Einstein manifold
In differential geometry and mathematical physics, an Einstein manifold is a Riemannian or pseudo-Riemannian manifold whose Ricci tensor is proportional to the metric. They are named after Albert Einstein because this condition is equivalent to saying that the metric is a solution of the vacuum Einstein field equations (with cosmological constant), although the dimension, as well as the signature, of the metric can be arbitrary, unlike the four-dimensional Lorentzian manifolds usually studied in general relativity.
If ''M'' is the underlying ''n''-dimensional manifold and ''g'' is its metric tensor the Einstein condition means that
:\mathrm = k\,g,
for some constant ''k'', where Ric denotes the Ricci tensor of ''g''. Einstein manifolds with ''k'' = 0 are called Ricci-flat manifolds.
==The Einstein condition and Einstein's equation==

In local coordinates the condition that (''M'', ''g'') be an Einstein manifold is simply
:R_ = k\,g_.
Taking the trace of both sides reveals that the constant of proportionality ''k'' for Einstein manifolds is related to the scalar curvature ''R'' by
:R = nk\,
where ''n'' is the dimension of ''M''.
In general relativity, Einstein's equation with a cosmological constant Λ is
:R_ - \fracg_R + g_\Lambda = 8\pi T_,
written in geometrized units with ''G'' = ''c'' = 1. The stress–energy tensor ''T''''ab'' gives the matter and energy content of the underlying spacetime. In a vacuum (a region of spacetime with no matter) ''T''''ab'' = 0, and one can rewrite Einstein's equation in the form (assuming ''n'' > 2):
:R_ = \frac\,g_.
Therefore, vacuum solutions of Einstein's equation are (Lorentzian) Einstein manifolds with ''k'' proportional to the cosmological constant.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Einstein manifold」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.