|
An endosymbiont is any organism that lives within the body or cells of another organism, i.e. forming an endosymbiosis (Greek: ἔνδον ''endon'' "within", σύν ''syn'' "together" and βίωσις ''biosis'' "living"). Examples are nitrogen-fixing bacteria (called rhizobia), which live in root nodules on legume roots, single-cell algae inside reef-building corals, and bacterial endosymbionts that provide essential nutrients to about 10–15% of insects. Many instances of endosymbiosis are obligate; that is, either the endosymbiont or the host cannot survive without the other, such as the gutless marine worms of the genus ''Riftia'', which get nutrition from their endosymbiotic bacteria. The most common examples of obligate endosymbioses are mitochondria and chloroplasts. Some human parasites, e.g. ''Wuchereria bancrofti'' and ''Mansonella perstans'', thrive in their intermediate insect hosts because of an obligate endosymbiosis with ''Wolbachia spp.'' They can both be eliminated from said hosts by treatments that target this bacterium. However, not all endosymbioses are obligate. Also, some endosymbioses can be harmful to either of the organisms involved. It is generally agreed that certain organelles of the eukaryotic cell, especially mitochondria and plastids such as chloroplasts, originated as bacterial endosymbionts. This theory is called the endosymbiotic theory, and was first articulated by the Russian botanist Konstantin Mereschkowski in 1910, even though the first paper that referenced this theory was published in 1905. == Endosymbiosis theory and mitochondria and chloroplasts == (詳細はmitochondria and chloroplasts in eukaryotic cells. The theory proposes that chloroplasts and mitochondria evolved from certain types of bacteria that eukaryotic cells engulfed through endophagocytosis. These cells and the bacteria trapped inside them entered a symbiotic relationship, a close association between different types of organisms over an extended time. However, to be specific, the relationship was endosymbiotic, meaning that one of the organisms (the bacteria) lived within the other (the eukaryotic cells). According to endosymbiosis theory, an anaerobic cell probably ingested an aerobic bacterium but failed to digest it. The aerobic bacterium flourished within the cell because the cell's cytoplasm was abundant in half-digested food molecules. The bacterium digested these molecules with oxygen and gained great amounts of energy. Because the bacterium had so much energy, it probably leaked some of it as adenosine triphosphate into the cell's cytoplasm. This benefited the anaerobic cell because it was now able to breathe aerobically, which means more potential for energy gain. Eventually, the aerobic bacterium could no longer live independently from the cell, and it, therefore, became a mitochondrion. The origin of the chloroplast is very similar to that of the mitochondrion. A cell must have captured a photosynthetic cyanobacterium and failed to digest it. The cyanobacterium thrived in the cell and eventually evolved into the first chloroplast. Other eukaryotic organelles may have also evolved through endosymbiosis; it has been proposed that cilia, flagella, centrioles, and microtubules may have originated from a symbiosis between a Spirochaete bacterium and an early eukaryotic cell, but this is not widely accepted among biologists. There are several examples of evidence that support endosymbiosis theory.〔(Tree of Life Eukaryotes )〕 Mitochondria and chloroplasts contain their own small supply of DNA, which may be remnants of the genome the organelles had when they were independent aerobic bacteria. The single most convincing evidence of the descent of organelles from bacteria is the position of mitochondria and plastid DNA sequences in phylogenetic trees of bacteria. Mitochondria have sequences that clearly indicate origin from a group of bacteria called the alphaproteobacteria. Plastids have DNA sequences that indicate origin from the cyanobacteria (blue-green algae). In addition, there are organisms alive today, called living intermediates, that are in a similar endosymbiotic condition to the prokaryotic cells and the aerobic bacteria. Living intermediates show that the evolution proposed by the endosymbiont theory is possible. For example, the giant amoeba ''Pelomyxa'' lacks mitochondria but has aerobic bacteria that carry out a similar role. A variety of corals, clams, snails, and one species of ''Paramecium'' permanently host algae in their cells. Many of the insect endosymbionts have been shown to have ancient associations with their hosts, involving strictly vertical inheritance. In addition, these insect symbionts have similar patterns of genome evolution to those found in true organelles: genome reduction, rapid rates of gene evolution, and bias in nucleotide base composition favoring adenine and thymine, at the expense of guanine and cytosine. Further evidence of endosymbiosis are the prokaryotic ribosomes found within chloroplasts and mitochondria as well as the double-membrane enclosing them. It used to be widely assumed that the inner membrane is the original membrane of the once independent prokaryote, while the outer one is the food vacuole (phagosomal membrane) it was enclosed in initially. However, this view neglects the fact that i) both modern cyanobacteria and alpha-proteobacteria are Gram-negative bacteria, which are surrounded by double membranes; ii) the outer membranes of the endosymbiotic organelles (chloroplasts and mitochondria) are very similar to those of these bacteria in their lipid and protein compositions. Accumulating biochemical data strongly suggests that the double-membrane-enclosing chloroplasts and mitochondria derived from those of the ancestral bacteria, and the phagosomal membrane disappeared during organelle evolution. Triple or quadruple membranes are found among certain algae, probably resulting from repeated endosymbiosis (although little else was retained of the engulfed cell). These modern organisms with endosymbiotic relationships with aerobic bacteria have verified the endosymbiotic theory, which explains the origin of mitochondria and chloroplasts from bacteria. Researchers in molecular and evolutionary biology no longer question this theory, although some of the details, such as the mechanisms for loss of genes from organelles to host nuclear genomes, are still being worked out. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Endosymbiont」の詳細全文を読む スポンサード リンク
|