翻訳と辞書
Words near each other
・ Energized
・ Energizer
・ Energizer brands
・ Energizer Bunny
・ Energlyn and Churchill Park railway station
・ Energo-Chromo-Kinese
・ Energoatom
・ Energoinvest
・ Energoland
・ Energomash
・ Energopetrol
・ Energoprojekt holding
・ Energosuchus
・ EnerGuide
・ Energumen (magazine)
Energy
・ Energy & Environment
・ Energy & Fuels
・ Energy & Water Ombudsman
・ Energy (band)
・ Energy (disambiguation)
・ Energy (Drake song)
・ Energy (esotericism)
・ Energy (event)
・ Energy (Fourplay album)
・ Energy (journal)
・ Energy (Keri Hilson song)
・ Energy (Melissa Manchester song)
・ Energy (Nuša Derenda song)
・ Energy (Operation Ivy album)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Energy : ウィキペディア英語版
Energy

In physics, energy is a property of objects which can be transferred to other objects or converted into different forms, but cannot be created or destroyed. The "ability of a system to perform work" is a common description, but it is difficult to give one single comprehensive definition of energy because of its many forms. For instance, in SI units, energy is measured in joules, and one joule is defined "mechanically", being the energy transferred to an object by the mechanical work of moving it a distance of 1 metre against a force of 1 newton.〔Energy (and its units) are often defined in terms of the work they can do. However, technically this is only an approximation, because the second law of thermodynamics means the work a system can do is always less than the total energy of the system, due to waste heat. See: 〕 However, there are many other definitions of energy, depending on the context, such as thermal energy, radiant energy, electromagnetic, nuclear, etc., where definitions are derived that are the most convenient.
Common energy forms include the kinetic energy of a moving object, the radiant energy carried by light, the potential energy stored by an object's position in a force field (gravitational, electric or magnetic), elastic energy stored by stretching solid objects, chemical energy released when a fuel burns, and the thermal energy due to an object's temperature. All of the many forms of energy are convertible to other kinds of energy, and obey the law of conservation of energy which says that energy can be neither created nor be destroyed; however, it can change from one form to another.
For "closed systems" with no external source or sink of energy, the first law of thermodynamics states that a system's energy is constant unless energy is transferred in or out by mechanical work or heat, and that no energy is lost in transfer. This means that it is impossible to create or destroy energy. The second law of thermodynamics states that all systems doing work always lose some energy as waste heat. This creates a limit to the amount of energy that can do work by a heating process, a limit called the available energy. Mechanical and other forms of energy can be transformed in the other direction into thermal energy without such limitations.〔 The total energy of a system can be calculated by adding up all forms of energy in the system.
Examples of energy transformation include generating electric energy from heat energy via a steam turbine, or lifting an object against gravity using electrical energy driving a crane motor. Lifting against gravity performs mechanical work on the object and stores gravitational potential energy In the object. If the object falls to the ground, gravity does mechanical work on the object which transforms the potential energy in the gravitational field to the kinetic energy released as heat on impact with the ground. Our Sun transforms nuclear potential energy to other forms of energy; its total mass does not decrease due to that in itself (since it still contains the same total energy even if in different forms), but its mass does decrease when the energy escapes out to its surroundings, largely as radiant energy.
Mass and energy are closely related. According to the theory of mass–energy equivalence, any object that has mass when stationary in a frame of reference (called rest mass) also has an equivalent amount of energy whose form is called rest energy in that frame, and any additional energy acquired by the object above that rest energy will increase an object's mass. For example, if you had a sensitive enough scale, you could measure an increase in mass after heating an object.
Living organisms require available energy to stay alive, such as the energy humans get from food. Civilisation gets the energy it needs from energy resources such as fossil fuels. The processes of Earth's climate and ecosystem are driven by the radiant energy Earth receives from the sun and the geothermal energy contained within the earth.
==Forms==
(詳細はsystem can be subdivided and classified in various ways. For example, classical mechanics distinguishes between kinetic energy, which is determined by an object's movement through space, and potential energy, which is a function of the position of an object within a field. It may also be convenient to distinguish gravitational energy, thermal energy, several types of nuclear energy (which utilize potentials from the nuclear force and the weak force), electric energy (from the electric field), and magnetic energy (from the magnetic field), among others. Many of these classifications overlap; for instance, thermal energy usually consists partly of kinetic and partly of potential energy.
Some types of energy are a varying mix of both potential and kinetic energy. An example is mechanical energy which is the sum of (usually macroscopic) kinetic and potential energy in a system. Elastic energy in materials is also dependent upon electrical potential energy (among atoms and molecules), as is chemical energy, which is stored and released from a reservoir of electrical potential energy between electrons, and the molecules or atomic nuclei that attract them. .The list is also not necessarily complete. Whenever physical scientists discover that a certain phenomenon appears to violate the law of energy conservation, new forms are typically added that account for the discrepancy.
Heat and work are special cases in that they are not properties of systems, but are instead properties of ''processes'' that transfer energy. In general we cannot measure how much heat or work are present in an object, but rather only how much energy is transferred among objects in certain ways during the occurrence of a given process. Heat and work are measured as positive or negative depending on which side of the transfer we view them from.
Potential energies are often measured as positive or negative depending on whether they are greater or less than the energy of a specified base state or configuration such as two interacting bodies being infinitely far apart. Wave energies (such as radiant or sound energy), kinetic energy, and rest energy are each greater than or equal to zero because they are measured in comparison to a base state of zero energy: "no wave", "no motion", and "no inertia", respectively.
The distinctions between different kinds of energy is not always clear-cut. As Richard Feynman points out:
Some examples of different kinds of energy:

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Energy」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.