翻訳と辞書
Words near each other
・ Enste
・ Enste, North Rhine-Westphalia
・ Ensted Power Station
・ Ensto
・ Enstone
・ Enstone Airfield
・ Enstone Spark
・ Enstratius
・ EnStream
・ Enstrom
・ Enstrom 480
・ Enstrom F-28
・ Enstrom Helicopter Corporation
・ Enstrom TH180
・ Enstrom Township, Roseau County, Minnesota
Enstrophy
・ Ensueños de Amor
・ Ensure
・ Ensuring Positive Futures
・ Ensuring Public Involvement in the Creation of National Monuments Act
・ Ensuès-la-Redonne
・ ENSV
・ Ensweiler Academy
・ Ensygnia
・ Enséñame a cantar
・ Ensí
・ Ensō
・ ENT
・ Ent
・ Ent (band)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Enstrophy : ウィキペディア英語版
Enstrophy

In fluid dynamics, the enstrophy \mathcal can be interpreted as another type of potential density (''ie''. see probability density); or, more concretely, the quantity directly related to the kinetic energy in the flow model that corresponds to dissipation effects in the fluid. It is particularly useful in the study of turbulent flows, and is often identified in the study of thrusters as well as the field of combustion theory.
The enstrophy can be described as the integral of the square of the vorticity \omega,
: \mathcal(\boldsymbol \omega) \equiv \frac \int_ \boldsymbol \omega^dS.
or, in terms of the flow velocity,
: \mathcal(\mathbf) \equiv \frac \int_ (\nabla \times \mathbf u)^dS.
Here, since the curl gives a scalar field in 2-dimensions (vortex) corresponding to the vector-valued velocity solving in the incompressible Navier–Stokes equations, we can integrate its square over a surface S to retrieve a continuous linear operator on the space of possible velocity fields, known as a ''current''. This equation is however somewhat misleading. Here we have chosen a simplified version of the enstrophy derived from the incompressibility condition, which is equivalent to vanishing divergence of the velocity field,
: \nabla \cdot \mathbf = 0.
More generally, when not restricted to the incompressible condition, or to two spatial dimensions, the enstrophy may be computed by:
: \mathcal(\mathbf) = \int_ |\nabla (\mathbf)|^dS.
where
: |\nabla (\mathbf)|
is the Frobenius norm of the gradient of the velocity field \mathbf.
== External links ==

*
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Enstrophy」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.