翻訳と辞書 |
Equianharmonic : ウィキペディア英語版 | Equianharmonic
In mathematics, and in particular the study of Weierstrass elliptic functions, the equianharmonic case occurs when the Weierstrass invariants satisfy ''g''2 = 0 and ''g''3 = 1. This page follows the terminology of Abramowitz and Stegun; see also the lemniscatic case. (These are special examples of complex multiplication.) In the equianharmonic case, the minimal half period ω2 is real and equal to : where is the Gamma function. The half period is : Here the period lattice is a real multiple of the Eisenstein integers. The constants ''e''1, ''e''2 and ''e''3 are given by : The case ''g''2 = 0, ''g''3 = ''a'' may be handled by a scaling transformation.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Equianharmonic」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|