|
The analysis of errors computed using the Global Positioning System is important for understanding how GPS works, and for knowing what magnitude of errors should be expected. The Global Positioning System makes corrections for receiver clock errors and other effects but there are still residual errors which are not corrected. The Global Positioning System (GPS) was created by the United States Department of Defense (DOD) in the 1970s. It has come to be widely used for navigation both by the U.S. military and the general public. GPS receiver position is computed based on data received from the satellites. Errors depend on geometric dilution of precision and the sources listed in the table below. == Overview == thumb User equivalent range errors (UERE) are shown in the table. There is also a numerical error with an estimated value, , of about 1 meter. The standard deviations, , for the coarse/acquisition (C/A) and precise codes are also shown in the table. These standard deviations are computed by taking the square root of the sum of the squares of the individual components (i.e., RSS for root sum squares). To get the standard deviation of receiver position estimate, these range errors must be multiplied by the appropriate dilution of precision terms and then RSS'ed with the numerical error. Electronics errors are one of several accuracy-degrading effects outlined in the table above. When taken together, autonomous civilian GPS horizontal position fixes are typically accurate to about 15 meters (50 ft). These effects also reduce the more precise P(Y) code's accuracy. However, the advancement of technology means that today, civilian GPS fixes under a clear view of the sky are on average accurate to about 5 meters (16 ft) horizontally. The term user equivalent range error (UERE) refers to the error of a component in the distance from receiver to a satellite. These UERE errors are given as ± errors thereby implying that they are unbiased or zero mean errors. These UERE errors are therefore used in computing standard deviations. The standard deviation of the error in receiver position, , is computed by multiplying PDOP (Position Dilution Of Precision) by , the standard deviation of the user equivalent range errors. is computed by taking the square root of the sum of the squares of the individual component standard deviations. PDOP is computed as a function of receiver and satellite positions. A detailed description of how to calculate PDOP is given in the section, geometric dilution of precision computation (GDOP). for the C/A code is given by: : The standard deviation of the error in estimated receiver position , again for the C/A code is given by: : The error diagram on the left shows the inter relationship of indicated receiver position, true receiver position, and the intersection of the four sphere surfaces. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Error analysis for the Global Positioning System」の詳細全文を読む スポンサード リンク
|