翻訳と辞書
Words near each other
・ Evdokia Kadi
・ Evdokia Petrova
・ Evanthia Makrygianni
・ Evanthia Maltsi
・ Evanton
・ Evanton railway station
・ Evanturel
・ Evany José Metzker
・ Evanès Boula
・ Evanílson
・ Evapoporometry
・ Evaporated milk
・ Evaporating Cloud
・ Evaporating dish
・ Evaporating gaseous globule
Evaporation
・ Evaporation (deposition)
・ Evaporation pond
・ Evaporation suppressing monolayers
・ Evaporative cooler
・ Evaporative cooling (atomic physics)
・ Evaporative-pattern casting
・ Evaporator
・ Evaporator (marine)
・ Evaporite
・ Evapotranspiration
・ Evar
・ Evar Saar
・ Evar Swanson
・ Evaraina Epudaina


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Evaporation : ウィキペディア英語版
Evaporation

Evaporation is a type of vaporization of a liquid that occurs from the surface of a liquid into a gaseous phase that is not saturated with the evaporating substance. The other type of vaporization is boiling, which is characterized by bubbles of saturated vapor forming in the liquid phase. Steam produced in a boiler is another example of evaporation occurring in a saturated vapor phase. Evaporation that occurs directly from the solid phase below the melting point, as commonly observed with ice at or below freezing or moth crystals (napthalene or paradichlorobenzene), is called sublimation.
On average, a fraction of the molecules in a glass of water have enough heat energy to escape from the liquid. Water molecules from the air enter the water in the glass, but as long as the relative humidity of the air in contact is less than 100% (saturation), the net transfer of water molecules will be to the air. The water in the glass will be cooled by the evaporation until an equilibrium is reached where the air supplies the amount of heat removed by the evaporating water. In an enclosed environment the water would evaporate until the air is saturated.
With sufficient temperature, the liquid would turn into vapor quickly (see boiling point). When the molecules collide, they transfer energy to each other in varying degrees, based on how they collide. Sometimes the transfer is so one-sided for a molecule near the surface that it ends up with enough energy to 'escape'.
Evaporation is an essential part of the water cycle. The sun (solar energy) drives evaporation of water from oceans, lakes, moisture in the soil, and other sources of water. In hydrology, evaporation and transpiration (which involves evaporation within plant stomata) are collectively termed evapotranspiration. Evaporation of water occurs when the surface of the liquid is exposed, allowing molecules to escape and form water vapor; this vapor can then rise up and form clouds. The tracking of evaporation from its source on the surface of the earth, through the atmosphere as vapor or clouds, and to its fate as precipitation closes the atmospheric water cycle, and embodies the concept of the precipitationshed.
== Theory ==

For molecules of a liquid to evaporate, they must be located near the surface, they have to be moving in the proper direction, and have sufficient kinetic energy to overcome liquid-phase intermolecular forces. When only a small proportion of the molecules meet these criteria, the rate of evaporation is low. Since the kinetic energy of a molecule is proportional to its temperature, evaporation proceeds more quickly at higher temperatures. As the faster-moving molecules escape, the remaining molecules have lower average kinetic energy, and the temperature of the liquid decreases. This phenomenon is also called evaporative cooling. This is why evaporating sweat cools the human body.
Evaporation also tends to proceed more quickly with higher flow rates between the gaseous and liquid phase and in liquids with higher vapor pressure. For example, laundry on a clothes line will dry (by evaporation) more rapidly on a windy day than on a still day. Three key parts to evaporation are heat, atmospheric pressure (determines the percent humidity) and air movement.
On a molecular level, there is no strict boundary between the liquid state and the vapor state. Instead, there is a Knudsen layer, where the phase is undetermined. Because this layer is only a few molecules thick, at a macroscopic scale a clear phase transition interface can be seen.
Liquids that do not evaporate visibly at a given temperature in a given gas (e.g., cooking oil at room temperature) have molecules that do not tend to transfer energy to each other in a pattern sufficient to frequently give a molecule the heat energy necessary to turn into vapor. However, these liquids ''are'' evaporating. It is just that the process is much slower and thus significantly less visible.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Evaporation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.