翻訳と辞書
Words near each other
・ Exaggeration
・ Exagistus
・ Exagon Engineering
・ Exagon Furtive-eGT
・ ExaGrid
・ Exagrotis
・ Exai
・ Exaile
・ Exakt Entertainment
・ Exakta
・ Exalarius
・ Exalcidion
・ Exalcidion carenatum
・ Exalcidion tetracanthum
・ Exalcidion tetramaston
Exalcomm
・ Exalead
・ Exalenz Bioscience
・ Exall
・ Exall v Partridge
・ Exallancyla
・ Exallandra
・ Exallias brevis
・ Exallodontus aguanai
・ Exallosophira
・ Exalofos, Thessaloniki
・ Exalphus
・ Exalphus aurivillii
・ Exalphus biannulatus
・ Exalphus cavifrons


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Exalcomm : ウィキペディア英語版
Exalcomm
In algebra, Exalcomm is a functor classifying the extensions of a commutative algebra by a module. More precisely, the elements of Exalcomm''k''(''R'',''M'') are isomorphism classes of commutative ''k''-algebras ''E'' with a homomorphism onto the ''k''-algebra ''R'' whose kernel is the ''R''-module ''M'' (with all pairs of elements in ''M'' having product 0). There are similar functors Exal and Exan for non-commutative rings and algebras, and functors Exaltop, Exantop. and Exalcotop that take a topology into account.
"Exalcomm" is an abbreviation for "COMMutative ALgebra EXtension" (or rather for the corresponding French phrase). It was introduced by .
Exalcomm is one of the André–Quillen cohomology groups and one of the Lichtenbaum–Schlessinger functors.
Given homomorphisms of commutative rings ''A'' → ''B'' → ''C'' and a ''C''-module ''L'' there is an exact sequence of ''A''-modules
:
0\rightarrow \operatorname_B(C,L)\rightarrow \operatorname_A(C,L)\rightarrow \operatorname_A(B,L)
\rightarrow \operatorname_B(C,L)\rightarrow \operatorname_A(C,L)\rightarrow \operatorname_A(B,L),

where Der''A''(''B'',''L'') is the module of derivations of the ''A''-algebra ''B'' with values in ''L''.
This sequence can be extended further to the right using André–Quillen cohomology.
==References==

*
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Exalcomm」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.