|
In computing, Extract, Transform and Load (ETL) refers to a process in database usage and especially in data warehousing that: * Extracts data from homogeneous or heterogeneous data sources * Transforms the data for storing it in proper format or structure for querying and analysis purpose * Loads it into the final target (database, more specifically, operational data store, data mart, or data warehouse) Usually all the three phases execute in parallel since the data extraction takes time, so while the data is being pulled another transformation process executes, processing the already received data and prepares the data for loading and as soon as there is some data ready to be loaded into the target, the data loading kicks off without waiting for the completion of the previous phases. ETL systems commonly integrate data from multiple applications (systems), typically developed and supported by different vendors or hosted on separate computer hardware. The disparate systems containing the original data are frequently managed and operated by different employees. For example, a cost accounting system may combine data from payroll, sales, and purchasing. == Extract == The first part of an ETL process involves extracting the data from the source system(s). In many cases this represents the most important aspect of ETL, since extracting data correctly sets the stage for the success of subsequent processes. Most data-warehousing projects consolidate data from different source systems. Each separate system may also use a different data organization and/or format. Common data-source formats include relational databases, XML and flat files, but may also include non-relational database structures such as Information Management System (IMS) or other data structures such as Virtual Storage Access Method (VSAM) or Indexed Sequential Access Method (ISAM), or even formats fetched from outside sources by means such as web spidering or screen-scraping. The streaming of the extracted data source and loading on-the-fly to the destination database is another way of performing ETL when no intermediate data storage is required. In general, the extraction phase aims to convert the data into a single format appropriate for transformation processing. An intrinsic part of the extraction involves data validation to confirm whether the data pulled from the sources has the correct/expected values in a given domain (such as a pattern/default or list of values). If the data fails the validation rules it is rejected entirely or in part. The rejected data is ideally reported back to the source system for further analysis to identify and to rectify the incorrect records. In some cases the extraction process itself may have to a data-validation rule in order to accept the data and flow to the next phase. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Extract, transform, load」の詳細全文を読む スポンサード リンク
|