翻訳と辞書
Words near each other
・ Fleț River
・ FLF
・ FLG
・ Flg-Rhizobiales RNA motif
・ Flhorban 920 (banana cultivar)
・ FLHS
・ FLI
・ FLI1
・ Fli4l
・ Flia
・ Fliballie
・ Flibanserin
・ Flibbertigibbet
・ Flibbiddydibbiddydob
・ Flibbix
FLiBe
・ Flibe Energy
・ FLIC
・ FLIC (file format)
・ Flic Story
・ Flic-en-Flac
・ FLICAM
・ Flick
・ Flick (2000 film)
・ Flick (2008 film)
・ Flick (fencing)
・ Flick (physics)
・ Flick affair
・ Flick Amendment
・ Flick Colby


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

FLiBe : ウィキペディア英語版
FLiBe

FLiBe is a molten salt made from a mixture of lithium fluoride (LiF) and beryllium fluoride (BeF2). It is both a nuclear reactor coolant and solvent for fertile or fissile material. It served both purposes in the Molten-Salt Reactor Experiment (MSRE).
The 2:1 mixture forms a stoichiometric compound, Li2BeF4, which has a melting point of 459 °C, a boiling point of 1430 °C, and a density of 1.94 g/cm3. Its heat capacity is 4540 kJ/m3, which is similar to that of water, more than four times that of sodium, and more than 200 times that of helium at typical reactor conditions.〔http://www.ornl.gov/~webworks/cppr/y2001/pres/122842.pdf CORE PHYSICS CHARACTERISTICS AND ISSUES FOR THE ADVANCED HIGH-TEMPERATURE REACTOR (AHTR), Ingersoll, Parma, Forsberg, and Renier, ORNL and Sandia National Laboratory〕 Its appearance is white to transparent, with crystalline grains in a solid state, morphing into a completely clear liquid upon melting. However, soluble fluorides such as UF4 and NiF2, can dramatically change the color salt in both solid and liquid state. This made spectrophotometry a viable analysis tool, and it was employed extensively during the MSRE Operations〔Toth, L. M. (1967). Containers for Molten Fluoride Spectroscopy.〕〔Simultaneous voltammetric generation of uranium(III) and spectrophotometric observation of the uranium(III)-uranium(IV) system in molten lithium fluoride-beryllum fluoride-zirconium fluoride
Jack Phillip Young, Gleb Mamantov, and F. L. Whiting
The Journal of Physical Chemistry 1967 71 (3), 782-783〕〔Absorption Spectra of Molten Fluoride Salts. Solutions of Several Metal Ions in Molten Lithium Fluoride-Sodium Fluoride-Potassium Fluoride
J. P. Young and J. C. White
Analytical Chemistry 1960 32 (7), 799-802〕
The eutectic mixture is slightly greater than 50% BeF2 and has a melting point of 360 °C.〔Williams, D. F., Toth, L. M., & Clarno, K. T. (2006). Assessment of Candidate Molten Salt Coolants for the Advanced High-Temperature Reactor ( AHTR ).〕 This mixture was never used in practice due to the overwhelming increase in viscosity caused by the BeF2 addition in the eutectic mixture. BeF2, which behaves as a glass, is only fluid in salt mixtures containing enough molar percent of Lewis base. Lewis bases, such as the alkali fluorides, will donate fluoride ions to the beryllium, breaking the glassy bonds which increase viscosity. In FLiBe, beryllium fluoride is able to sequester two fluoride ions from two lithium fluorides in a liquid state, converting it into the tetrafluorberyllate ion BeF4−2.〔Raman spectra of Be2F73- and higher polymers of beryllium fluorides in the crystalline and molten state
L. M. Toth, J. B. Bates, and G. E. Boyd
The Journal of Physical Chemistry 1973 77 (2), 216-221〕
==Chemistry==

The chemistry of FLiBe, and other fluoride salts, is unique due to the high temperatures at which the reactions occur, the ionic nature of the salt, and the reversibility of many of the reactions. At the most basic level, FLiBe melts and complexes itself through
2LiF_ + BeF_ \longrightarrow 2Li^+_ + BeF_^.
This reaction occurs upon initial melting. However, if the components are exposed to air they will absorb moisture. This moisture plays a negative role at high temperature by converting BeF2, and to a lesser extent LiF, into an oxide or hydroxide through the reactions
BeF_ + 2H_2O_ \leftrightharpoons Be(OH)_+2HF_.
and
BeF_ + H_2O_ \leftrightharpoons Be(O)_+2HF_.
While BeF2 is very stable chemical compound, the formation of oxides, hydroxides, and hydrogen fluoride reduce the stability and inertness of the salt. This leads to corrosion. Its important to understand that all dissolved species in these two reactions cause the corrosion—not just the hydrogen fluoride. This is because all dissolved components alter the reduction potential or redox potential. The redox potential is an innate and measurable voltage in the salt which is the prime indicator of the corrosion potential in salt. Usually, the reaction
HF_+e^- \longrightarrow F^- + 1/2 H_.
is set at zero volts. This reaction proves convenient in a laboratory setting and can be used to set the salt to zero through bubbling a 1:1 mixture of hydrogen fluoride and hydrogen through the salt. Occasionally the reaction:
NiF_ + 2e^- \longrightarrow Ni_ + 2F^-.
is used as a reference. Regardless of where the zero is set, all other reactions which occur in the salt will occur at predictable, known voltages relative to the zero. Therefore, if the redox potential of the salt is close to a specific reaction's voltage, that reaction can be expected to be the predominate reaction. Therefore, it is important to keep a salt's redox potential as far away from reactions which are undesirable. For example, in a container alloy of nickel, iron, and chromium, the reactions of concern would be the fluorination of container and subsequent dissolution of these metal fluorides. The dissolution of the metal fluorides then alters the redox potential. This process continues until an equilibrium between metals and salt is reached. It is essential that a salt's redox potential be kept as far away from fluorination reactions as possible, and that metals in contact with salt be as far away from the salt's redox potential as possible in order to prevent excessive corrosion.
The easiest method to prevent undesirable reactions is to pick materials whose reaction voltages are far from the redox potential of the salt in the salt's worst case. Some of these materials are tungsten, carbon, molybdenum, platinum, iridium, and nickel. Of all these materials, only two are affordable and weldable: nickel and molybdenum. These two elements were chosen as the main portion of Hastelloy-N, the material of the MSRE.
Altering the redox potential of flibe can be done in two ways. First, the salt can be forced by physically applying a voltage to the salt with an inert electrode. The second, more common way, is to perform a chemical reaction in the salt which occurs at the desired voltage. For example, redox potential can be altered by sparging hydrogen and hydrogen fluoride into the salt or by dipping a metal into the salt.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「FLiBe」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.