翻訳と辞書 |
Fermat polygonal number theorem : ウィキペディア英語版 | Fermat polygonal number theorem In additive number theory, the Fermat polygonal number theorem states that every positive integer is a sum of at most -gonal numbers. That is, every positive integer can be written as the sum of three or fewer triangular numbers, and as the sum of four or fewer square numbers, and as the sum of five or fewer pentagonal numbers, and so on. ==Examples== Three such representations of the number 17, for example, are shown below: :17 = 10 + 6 + 1 (''triangular numbers'') :17 = 16 + 1 (''square numbers'') :17 = 12 + 5 (''pentagonal numbers'').
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Fermat polygonal number theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|