|
Fibrinogen (''factor I'') is a glycoprotein in vertebrates that helps in the formation of blood clots. It consists of a linear array of three nodules held together by a very thin thread which is estimated to have a diameter between 8 and 15 Angstrom (Å). The two end nodules are alike but the center one is slightly smaller. Measurements of shadow lengths indicate that nodule diameters are in the range 50 to 70 Å. The length of the dried molecule is 475 ± 25 Å. The fibrinogen molecule is a soluble, large, and complex glycoprotein, 340 kDa plasma glycoprotein, that is converted by thrombin into fibrin during blood clot formation. It has a rod-like shape with dimensions of 9 × 47.5 × 6 nm and it shows a negative net charge at physiological pH (IP at pH 5.2). Fibrinogen is synthesized in the liver by the hepatocytes.〔 The concentration of fibrinogen in the blood plasma is 200–400 mg/dL (normally measured using the Clauss method). During normal blood coagulation, a coagulation cascade activates the zymogen prothrombin by converting it into the serine protease thrombin. Thrombin then converts the soluble fibrinogen into insoluble fibrin strands. These strands are then cross-linked by factor XIII to form a blood clot. FXIIa stabilizes fibrin further by incorporation of the fibrinolysis inhibitors alpha-2-antiplasmin and TAFI (thrombin activatable fibrinolysis inhibitor, procarboxypeptidase B), and binding to several adhesive proteins of various cells. Both the activation of factor XIII by thrombin and plasminogen activator (t-PA) are catalyzed by fibrin.〔 Fibrin specifically binds the activated coagulation factors factor Xa and thrombin and entraps them in the network of fibers, thus functioning as a temporary inhibitor of these enzymes, which stay active and can be released during fibrinolysis. Research from 2011 has shown that fibrin plays a key role in the inflammatory response and development of rheumatoid arthritis. == Physiology == In its natural form, fibrinogen can form bridges between platelets, by binding to their GpIIb/IIIa surface membrane proteins; however, its major function is as the precursor to fibrin. Fibrinogen, the principal protein of vertebrate blood clotting, is a hexamer, containing two sets of three different chains (α, β, and γ), linked to each other by disulfide bonds. The N-terminal sections of these three chains contain the cysteines that participate in the cross-linking of the chains. The C-terminal parts of the α, β and γ chains contain a domain of about 225 amino-acid residues, which can function as a molecular recognition unit. In fibrinogen as well as in angiopoietin, this domain is implicated in protein-protein interactions. In lectins, such as mammalian ficolins and invertebrate tachylectin 5A, the fibrinogen C-terminal domain binds carbohydrates. On the fibrinogen α and β chains, there is a small peptide sequence (called a fibrinopeptide). These small peptides are what prevent fibrinogen from spontaneously forming polymers with itself.〔(PDOC00445 ) Fibrinogen C-terminal domain in PROSITE〕 The conversion of fibrinogen to fibrin occurs in several steps. First, thrombin cleaves fibrinopeptide A and B located on the N-terminus of the fibrinogen alpha and beta chains respectively. The resulting fibrin monomers polymerize end to end to from protofibrils, which in turn associate laterally to form fibrin fibers. In a final step, the fibrin fibers associate to form the fibrin gel. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Fibrinogen」の詳細全文を読む スポンサード リンク
|