翻訳と辞書 |
G2-structure : ウィキペディア英語版 | G2-structure
In differential geometry, a G2-structure is an important type of G-structure that can be defined on a smooth manifold. If ''M'' is a smooth manifold of dimension seven, then a G2-structure is a reduction of structure group of the frame bundle of ''M'' to the compact, exceptional Lie group G2. == Equivalent conditions == The condition of ''M '' admitting a G2 structure is equivalent to any of the following conditions: *The first and second Stiefel–Whitney classes of ''M'' vanish. *''M'' is orientable and admits a spin structure. The last condition above correctly suggests that many manifolds admit G2-structures.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「G2-structure」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|