翻訳と辞書
Words near each other
・ Gene Strenicer
・ Gene Stump
・ Gene Stupnitsky
・ Gene Sullivan
・ Gene Pitney's Big Sixteen, Volume Two
・ Gene Pokorny
・ Gene Polisseni Center
・ Gene Polito
・ Gene Pollar
・ Gene polymorphism
・ Gene pool
・ Gene Porter
・ Gene Porter (disambiguation)
・ Gene Porter Bridwell
・ Gene Prebola
Gene prediction
・ Gene Price
・ Gene Principe
・ Gene Pritsker
・ Gene product
・ Gene Profit
・ Gene Protection Initiative
・ Gene Puerling
・ Gene Pukall
・ Gene Quill
・ Gene Quintano
・ Gene R. Cook
・ Gene Rains
・ Gene Ramey
・ Gene Rardin


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Gene prediction : ウィキペディア英語版
Gene prediction

In computational biology gene prediction or gene finding refers to the process of identifying the regions of genomic DNA that encode genes. This includes protein-coding genes as well as RNA genes, but may also include prediction of other functional elements such as regulatory regions. Gene finding is one of the first and most important steps in understanding the genome of a species once it has been sequenced.
In its earliest days, "gene finding" was based on painstaking experimentation on living cells and organisms. Statistical analysis of the rates of homologous recombination of several different genes could determine their order on a certain chromosome, and information from many such experiments could be combined to create a genetic map specifying the rough location of known genes relative to each other. Today, with comprehensive genome sequence and powerful computational resources at the disposal of the research community, gene finding has been redefined as a largely computational problem.
Determining that a sequence is functional should be distinguished from determining the function of the gene or its product. Predicting the function of a gene and confirming that the gene prediction is accurate still demands ''in vivo'' experimentation through gene knockout and other assays, although frontiers of bioinformatics research are making it increasingly possible to predict the function of a gene based on its sequence alone.
Gene prediction is one of the key steps in Genome annotation, following Sequence assembly, the filtering of non-coding regions and repeat masking.
Gene prediction is closely related to the so called 'target search problem' investigating how DNA-binding proteins (transcription factors) locate specific binding sites within the genome. Many aspects of structural gene prediction are based on current understanding of underlying biochemical processes in the cell such as gene transcription, translation, protein–protein interactions and regulation processes, which are subject of active research in the various Omics fields such as Transcriptomics, Proteomics, Metabolomics, and more generally structural and functional genomics.
== Empirical methods ==
In empirical (similarity, homology or evidence-based) gene finding systems, the target genome is searched for sequences that are similar to extrinsic evidence in the form of the known expressed sequence tags, messenger RNA (mRNA), protein products, and homologous or orthologous sequences. Given an mRNA sequence, it is trivial to derive a unique genomic DNA sequence from which it had to have been transcribed. Given a protein sequence, a family of possible coding DNA sequences can be derived by reverse translation of the genetic code. Once candidate DNA sequences have been determined, it is a relatively straightforward algorithmic problem to efficiently search a target genome for matches, complete or partial, and exact or inexact. Given a sequence, local alignment algorithms such as BLAST, FASTA and Smith-Waterman look for regions of similarity between the target sequence and possible candidate matches. Matches can be complete or partial, and exact or inexact. The success of this approach is limited by the contents and accuracy of the sequence database.
A high degree of similarity to a known messenger RNA or protein product is strong evidence that a region of a target genome is a protein-coding gene. However, to apply this approach systemically requires extensive sequencing of mRNA and protein products. Not only is this expensive, but in complex organisms, only a subset of all genes in the organism's genome are expressed at any given time, meaning that extrinsic evidence for many genes is not readily accessible in any single cell culture. Thus, to collect extrinsic evidence for most or all of the genes in a complex organism requires the study of many hundreds or thousands of cell types, which presents further difficulties. For example, some human genes may be expressed only during development as an embryo or fetus, which might be difficult to study for ethical reasons.
Despite these difficulties, extensive transcript and protein sequence databases have been generated for human as well as other important model organisms in biology, such as mice and yeast. For example, the RefSeq database contains transcript and protein sequence from many different species, and the Ensembl system comprehensively maps this evidence to human and several other genomes. It is, however, likely that these databases are both incomplete and contain small but significant amounts of erroneous data.
New high-throughput Transcriptome sequencing technologies such as RNA-Seq and ChIP-sequencing open opportunities for incorporating additional extrinsic evidence into gene prediction and validation, and allow structurally rich and more accurate alternative to previous methods of measuring Gene expression such as Expressed sequence tag or DNA microarray.
Major challenges involved in gene prediction involve dealing with sequencing errors in raw DNA data, dependence on the quality of the Sequence assembly, handling short reads, Frameshift mutations, Overlapping genes and incomplete genes.
In prokaryotes it's essential to consider Horizontal gene transfer when searching for gene sequence homology. An additional important factor underused in current gene detection tools is existence of gene clusters—operons in both prokaryotes and eukaryotes. Most popular gene detectors treat each gene in isolation, independent of others, which is not biologically accurate.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Gene prediction」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.