翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

H-principle : ウィキペディア英語版
Homotopy principle

In mathematics, the homotopy principle (or h-principle) is a very general way to solve partial differential equations (PDEs), and more generally partial differential relations (PDRs). The h-principle is good for underdetermined PDEs or PDRs, such as occur in the immersion problem, isometric immersion problem, and other areas.
The theory was started by Yakov Eliashberg, Mikhail Gromov and Anthony V. Phillips. It was based on earlier results that reduced partial differential relations to homotopy, particularly for immersions. The first evidence of h-principle appeared in the Whitney–Graustein theorem. This was followed by the Nash-Kuiper Isometric C^1 embedding theorem and the Smale-Hirsch Immersion theorem.
==Rough idea==

Assume we want to find a function ''ƒ'' on R''m'' which satisfies a partial differential equation of degree ''k'', in co-ordinates (u_1,u_2,\dots,u_m). One can rewrite it as
:\Psi(u_1,u_2,\dots,u_m, J^k_f)=0\!\,
where J^k_f stands for all partial derivatives of ''ƒ'' up to order ''k''. Let us exchange every variable in J^k_f for new independent variables y_1,y_2,\dots,y_N.
Then our original equation can be thought as a system of
:\Psi^\ldots\partial u_}.\!\,
A solution of
:\Psi^{}_{}(u_1,u_2,\dots,u_m,y_1,y_2,\dots,y_N)=0\!\,
is called a non-holonomic solution, and a solution of the system (which is a solution of our original PDE) is called a holonomic solution.
In order to check whether a solution exists, first check if there is a non-holonomic solution (usually it is quite easy and if not then our original equation did not have any solutions).
A PDE ''satisfies the h-principle'' if any non-holonomic solution can be deformed into a holonomic one in the class of non-holonomic solutions. Thus in the presence of h-principle, a differential topological problem reduces to an algebraic topological problem. More explicitly this means that apart from the topological obstruction there is no other obstruction to the existence of a holonomic solution. The topological problem of finding a ''non-holonomic solution'' is much easier to handle and can be addressed with the obstruction theory for topological bundles.
Many underdetermined partial differential equations satisfy the h-principle. However, the falsity of an h-principle is also an interesting statement, intuitively this means the objects being studied have non-trivial geometry that cannot be reduced to topology. As an example, embedded Lagrangians in a symplectic manifold do not satisfy an h-principle, to prove this one needs to find invariants coming from pseudo-holomorphic curves.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Homotopy principle」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.