翻訳と辞書 |
Hypersimplex : ウィキペディア英語版 | Hypersimplex
In polyhedral combinatorics, a hypersimplex, Δ''d'',''k'', is a convex polytope that generalizes the simplex. It is determined by two parameters ''d'' and ''k'', and is defined as the convex hull of the ''d''-dimensional vectors whose coefficients consist of ''k'' ones and ''d'' − ''k'' zeros. It forms a (''d'' − 1)-dimensional polytope, because all of these vectors lie in a single (''d'' − 1)-dimensional hyperplane.〔.〕 ==Properties== The number of vertices in Δ''d'',''k'' is .〔 The graph formed by the vertices and edges of a hypersimplex Δ''d'',''k'' is the Johnson graph ''J''(''d'',''k'').〔.〕
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Hypersimplex」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|