翻訳と辞書
Words near each other
・ Hypocrita speciosa
・ Hypocrita strigifera
・ Hypocrita temperata
・ Hypocrita toulgoetae
・ Hypocrita turbida
・ Hypocrita variabilis
・ Hypocrita wingerteri
・ Hypocrite Channel
・ Hypocrite in a Hippy Crypt
・ Hypocrite in a Pouffy White Dress
・ Hypocrites (film)
・ Hypocritical Oaf
・ Hypocryptothrix
・ Hypoctonus
・ Hypoctonus formosus
Hypocycloid
・ Hypocysta
・ Hypocysta adiante
・ Hypocysta angustata
・ Hypocysta aroa
・ Hypocysta euphemia
・ Hypocysta irius
・ Hypocysta metirius
・ Hypocysta pseudirius
・ Hypocystina
・ Hypodactylia
・ Hypodactylus
・ Hypodactylus adercus
・ Hypodactylus araiodactylus
・ Hypodactylus fallaciosus


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hypocycloid : ウィキペディア英語版
Hypocycloid

In geometry, a hypocycloid is a special plane curve generated by the trace of a fixed point on a small circle that rolls within a larger circle. It is comparable to the cycloid but instead of the circle rolling along a line, it rolls within a circle.
==Properties==

If the smaller circle has radius ''r'', and the larger circle has radius ''R'' = ''kr'', then the
parametric equations for the curve can be given by either:
:x (\theta) = (R - r) \cos \theta + r \cos \left( \frac \theta \right)
:y (\theta) = (R - r) \sin \theta - r \sin \left( \frac \theta \right),
or:
:x (\theta) = r (k - 1) \cos \theta + r \cos \left( (k - 1) \theta \right) \,
:y (\theta) = r (k - 1) \sin \theta - r \sin \left( (k - 1) \theta \right). \,
If ''k'' is an integer, then the curve is closed, and has ''k'' cusps (i.e., sharp corners, where the curve is not
differentiable). Specially for k=2 the curve is a straight line and the circles are called Cardano circles. Girolamo Cardano was the first to describe these hypocycloids and their applications to high-speed printing.
If ''k'' is a rational number, say ''k'' = ''p''/''q'' expressed in simplest terms, then the curve has ''p'' cusps.
If ''k'' is an irrational number, then the curve never closes, and fills the space between the larger circle and a circle of radius ''R'' − 2''r''.
Each hypocycloid (for any value of ''r'') is a brachistochrone for the gravitational potential inside a homogeneous sphere of radius ''R''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hypocycloid」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.