|
Isomerases are a general class of enzymes which convert a molecule from one isomer to another. Isomerases can either facilitate intramolecular rearrangements in which bonds are broken and formed or they can catalyze conformational changes. The general form of such a reaction is as follows: A–B → B–A There is only one substrate yielding one product. This product has the same molecular formula as the substrate but differs in bond connectivity or spatial arrangements. Isomerases catalyze reactions across many biological processes, such as in glycolysis and carbohydrate metabolism. ==Isomerization== Isomerases catalyze changes within one molecule. They convert one isomer to another, meaning that the end product has the same molecular formula but a different physical structure. Isomers themselves exist in many varieties but can generally be classified as structural isomers or stereoisomers. Structural isomers have a different ordering of bonds and/or different bond connectivity from one another, as in the case of hexane and its four other isomeric forms (2-methylpentane, 3-methylpentane, 2,2-dimethylbutane, and 2,3-dimethylbutane). Stereoisomers have the same ordering of individual bonds and the same connectivity but the three-dimensional arrangement of bonded atoms differ. For example, 2-butene exists in two isomeric forms: ''cis''-2-butene and ''trans''-2-butene. The sub-categories of isomerases containing racemases, epimerases and cis-trans isomers are examples of enzymes catalyzing the interconversion of stereoisomers. Intramolecular lyases, oxidoreductases and transferases catalyze the interconversion of structural isomers. The prevalence of each isomer in nature depends in part on the isomerization energy, the difference in energy between isomers. Isomers close in energy can interconvert easily and are often seen in comparable proportions. The isomerization energy, for example, for converting from a stable ''cis'' isomer to the less stable ''trans'' isomer is greater than for the reverse reaction, explaining why in the absence of isomerases or an outside energy source such as ultraviolet radiation a given ''cis'' isomer tends to be present in greater amounts than the ''trans'' isomer. Isomerases can increase the reaction rate by lowering the isomerization energy. Calculating isomerase kinetics from experimental data can be more difficult than for other enzymes because the use of product inhibition experiments is impractical. That is, isomerization is not an irreversible reaction since a reaction vessel will contain one substrate and one product so the typical simplified model for calculating reaction kinetics does not hold. There are also practical difficulties in determining the rate-determining step at high concentrations in a single isomerization. Instead, tracer perturbation can overcome these technical difficulties if there are two forms of the unbound enzyme. This technique uses isotope exchange to measure indirectly the interconversion of the free enzyme between its two forms. The radiolabeled substrate and product diffuse in a time-dependent manner. When the system reaches equilibrium the addition of unlabeled substrate perturbs or unbalances it. As equilibrium is established again, the radiolabeled substrate and product are tracked to determine energetic information. The earliest use of this technique elucidated the kinetics and mechanism underlying the action of phosphoglucomutase, favoring the model of indirect transfer of phosphate with one intermediate and the direct transfer of glucose. This technique was then adopted to study the profile of proline racemase and its two states: the form which isomerizes L-proline and the other for D-proline. At high concentrations it was shown that the transition state in this interconversion is rate-limiting and that these enzyme forms may differ just in the protonation at the acidic and basic groups of the active site.〔 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Isomerase」の詳細全文を読む スポンサード リンク
|