翻訳と辞書
Words near each other
・ Isotrias stramentana
・ Isotricha intestinalis
・ Isotrilophus
・ Isotron
・ Isotropic bands
・ Isotropic coordinates
・ Isotropic etching
・ Isotropic formulations
・ Isotropic line
・ Isotropic manifold
・ Isotropic quadratic form
・ Isotropic radiation
・ Isotropic radiator
・ Isotropic solid
・ Isotropis
Isotropy
・ Isotta Brothers
・ Isotta degli Atti
・ Isotta Fraschini
・ Isotta Fraschini Asso XI
・ Isotta Fraschini D65
・ Isotta Fraschini D80
・ Isotta Fraschini Delta
・ Isotta Fraschini T8 and T12
・ Isotta Fraschini Tipo 8
・ Isotta Fraschini Tipo 8A
・ Isotta Fraschini Tipo 8B
・ Isotta Fraschini Tipo 8C Monterosa
・ Isotta Fraschini Tipo D
・ Isotta Fraschini Tipo FE & FENC


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Isotropy : ウィキペディア英語版
Isotropy

Isotropy is uniformity in all orientations; it is derived from the Greek ''isos'' (ἴσος, "equal") and ''tropos'' (τρόπος, "way"). Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ''an'', hence ''anisotropy''. ''Anisotropy'' is also used to describe situations where properties vary systematically, dependent on direction. Isotropic radiation has the same intensity regardless of the direction of measurement, and an isotropic field exerts the same action regardless of how the test particle is oriented.
==Mathematics==
Within mathematics, ''isotropy'' has a few different meanings:
; Isotropic manifolds: A manifold is isotropic if the geometry on the manifold is the same regardless of direction. A similar concept is homogeneity. A manifold can be homogeneous without being isotropic, but if it is inhomogeneous, it is necessarily anisotropic.
; Isotropic quadratic form: A quadratic form ''q'' is said to be isotropic if there is a non-zero vector ''v'' such that .
; Isotropic coordinates on an isotropic chart for Lorentzian manifolds.
; Isotropy group: An isotropy group is the group of isomorphisms from any object to itself in a groupoid.〔A groupoid \mathcal G is a category where all morphisms are isomorphisms, i.e., invertible. If G \in \mathcal G is any object, then \mathcal G(G,G) denotes its isotropy group: the group of isomorphisms from G to G.〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Isotropy」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.