|
Joseph-Louis Lagrange (〔("Lagrange" ). ''Merriam-Webster Dictionary''.〕 or ;〔("Lagrange" ). ''Random House Webster's Unabridged Dictionary''.〕 ), born Giuseppe Lodovico Lagrangia〔 〕 or Giuseppe Ludovico De la Grange Tournier (also reported as Giuseppe Luigi Lagrange or Lagrangia〔() ''Encyclopedia of Space and Astronomy.''〕) (25 January 1736 – 10 April 1813) was an Italian Enlightenment Era mathematician and astronomer. He made significant contributions to the fields of analysis, number theory, and both classical and celestial mechanics. In 1766, on the recommendation of Euler and d'Alembert, Lagrange succeeded Euler as the director of mathematics at the Prussian Academy of Sciences in Berlin, Prussia, where he stayed for over twenty years, producing volumes of work and winning several prizes of the French Academy of Sciences. Lagrange's treatise on analytical mechanics (''Mécanique Analytique'', 4. ed., 2 vols. Paris: Gauthier-Villars et fils, 1888–89), written in Berlin and first published in 1788, offered the most comprehensive treatment of classical mechanics since Newton and formed a basis for the development of mathematical physics in the nineteenth century. In 1787, at age 51, he moved from Berlin to Paris and became a member of the French Academy. He remained in France until the end of his life. He was significantly involved in the decimalisation in Revolutionary France, became the first professor of analysis at the École Polytechnique upon its opening in 1794, founding member of the Bureau des Longitudes and Senator in 1799. ==Scientific contribution== Lagrange was one of the creators of the calculus of variations, deriving the Euler–Lagrange equations for extrema of functionals. He also extended the method to take into account possible constraints, arriving at the method of Lagrange multipliers. Lagrange invented the method of solving differential equations known as variation of parameters, applied differential calculus to the theory of probabilities and attained notable work on the solution of equations. He proved that every natural number is a sum of four squares. His treatise ''Theorie des fonctions analytiques'' laid some of the foundations of group theory, anticipating Galois. In calculus, Lagrange developed a novel approach to interpolation and Taylor series. He studied the three-body problem for the Earth, Sun and Moon (1764) and the movement of Jupiter’s satellites (1766), and in 1772 found the special-case solutions to this problem that yield what are now known as Lagrangian points. But above all, he is best known for his work on mechanics, where he has transformed Newtonian mechanics into a branch of analysis, Lagrangian mechanics as it is now called, and presented the so-called mechanical "principles" as simple results of the variational calculus. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Joseph-Louis Lagrange」の詳細全文を読む スポンサード リンク
|