翻訳と辞書
Words near each other
・ Lab Report
・ Lab School
・ Lab School of Baltimore
・ Lab School of Washington
・ Lab Sefid
・ Lab Sefid-e Olya
・ Lab Sefid-e Sofla
・ Lab Synthèse
・ Lab Tests Online
・ Lab Waste
・ Lab website
・ LAb(au)
・ Lab-e Darya-ye Lasku Kalayeh
・ Lab-e Rud
・ Lab-e-Mehran
Lab-on-a-chip
・ Lab.gruppen
・ Lab126
・ Laba
・ Laba congee
・ Laba Festival
・ Laba Forest
・ Laba garlic
・ Laba River
・ Laba Sosseh
・ Labab
・ Labadee
・ Labadi Beach
・ Labadie
・ Labadie Arboretum


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Lab-on-a-chip : ウィキペディア英語版
Lab-on-a-chip

A lab-on-a-chip (LOC) is a device that integrates one or several laboratory functions on a single chip of only millimeters to a few square centimeters to achieve automation and high-throughput screening. LOCs deal with the handling of extremely small fluid volumes down to less than pico liters. Lab-on-a-chip devices are a subset of Micro-electro-mechanical systems (MEMS) devices and often indicated by "Micro Total Analysis Systems" (µTAS) as well. LOC is closely related to, and overlaps with, microfluidics which describes primarily the physics, the manipulation and study of minute amounts of fluids. However, strictly regarded "Lab-on-a-Chip" indicates generally the scaling of single or multiple lab processes down to chip-format, whereas "µTAS" is dedicated to the integration of the total sequence of lab processes to perform chemical analysis. The term "Lab-on-a-Chip" was introduced later on when it turned out that µTAS technologies were more widely applicable than only for analysis purposes.
== History ==

After the invention of microtechnology (~1954) for realizing integrated semiconductor structures for microelectronic chips, these lithography-based technologies were soon applied in pressure sensor manufacturing (1966) as well. Due to further development of these usually CMOS-compatibility limited processes, a tool box became available to create micrometre or sub-micrometre sized mechanical structures in silicon wafers as well: the Micro Electro Mechanical Systems (MEMS) era (also indicated with Micro System Technology - MST) had started.
Next to pressure sensors, airbag sensors and other mechanically movable structures, fluid handling devices were developed. Examples are: channels (capillary connections), mixers, valves, pumps and dosing devices. The first LOC analysis system was a gas chromatograph, developed in 1979 by S.C. Terry - Stanford University.〔S.C.Terry, J.H.Jerman and J.B.Angell:A Gas Chromatographic Air Analyzer Fabricated on a Silicon Wafer,IEEE Trans.Electron Devices,ED-26,12(1979)1880–1886.〕 However, only at the end of the 1980s, and beginning of the 1990s, the LOC research started to seriously grow as a few research groups in Europe developed micropumps, flowsensors and the concepts for integrated fluid treatments for analysis systems.〔A.Manz, N.Graber and H.M.Widmer:Miniaturized total Chemical Analysis systems:A Novel Concept for Chemical Sensing,Sensors and Actuators,B 1 (1990)244–248.〕 These µTAS concepts demonstrated that integration of pre-treatment steps, usually done at lab-scale, could extend the simple sensor functionality towards a complete laboratory analysis, including additional cleaning and separation steps.
A big boost in research and commercial interest came in the mid 1990s, when µTAS technologies turned out to provide interesting tooling for genomics applications, like capillary electrophoresis and DNA microarrays. A big boost in research support also came from the military, especially from DARPA (Defense Advanced Research Projects Agency), for their interest in portable bio/chemical warfare agent detection systems. The added value was not only limited to integration of lab processes for analysis but also the characteristic possibilities of individual components and the application to other, non-analysis, lab processes. Hence the term "Lab-on-a-Chip" was introduced.
Although the application of LOCs is still novel and modest, a growing interest of companies and applied research groups is observed in different fields such as analysis (e.g. chemical analysis, environmental monitoring, medical diagnostics and cellomics) but also in synthetic chemistry (e.g. rapid screening and microreactors for pharmaceutics). Besides further application developments, research in LOC systems is expected to extend towards downscaling of fluid handling structures as well, by using nanotechnology. Sub-micrometre and nano-sized channels, DNA labyrinths, single cell detection and analysis,〔Venkat Chokkalingam, Jurjen Tel, Florian Wimmers, Xin Liu, Sergey Semenov, Julian Thiele, Carl G. Figdor, Wilhelm T.S. Huck, Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics, Lab on a Chip, 13, 4740-4744, 2013, http://pubs.rsc.org/en/content/articlelanding/2013/lc/c3lc50945a#!divAbstract〕 and nano-sensors, might become feasible, allowing new ways of interaction with biological species and large molecules. Many books have been written that cover various aspects of these devices, including the fluid transport, system properties, sensing techniques, and bioanalytical applications.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Lab-on-a-chip」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.