翻訳と辞書
Words near each other
・ Leningrad City Chess Championship
・ Leningrad City Committee of the Communist Party of the Soviet Union
・ Leningrad Codex
・ Leningrad Communist University
・ Leningrad Cowboys
・ Leningrad Cowboys discography
・ Leningrad Cowboys Go America
・ Leningrad Cowboys Go America (album)
・ Leningrad Cowboys Go Wild
・ Leningrad Cowboys Meet Moses
・ Leningrad Front
・ Leningrad Gospels
・ Leningrad Hero City Obelisk
・ Length function
・ Length measurement
Length of a module
・ Length of a Weyl group element
・ Length of service award program
・ Length of stay
・ Length of War
・ Length overall
・ Length scale
・ Length time bias
・ Lengthens F.C.
・ Lengthsman
・ Lengua Armada Discos
・ Lengua language
・ Lenguazaque
・ Lengue
・ Lengue language


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Length of a module : ウィキペディア英語版
Length of a module

In abstract algebra, the length of a module is a measure of the module's "size". It is defined to be the length of the longest chain of submodules and is a generalization of the concept of dimension for vector spaces. Modules with ''finite'' length share many important properties with finite-dimensional vector spaces.
Other concepts used to 'count' in ring and module theory are depth and height; these are both somewhat more subtle to define. There are also various ideas of ''dimension'' that are useful. Finite length commutative rings play an essential role in functorial treatments of formal algebraic geometry.
== Definition ==

Let ''M'' be a (left or right) module over some ring ''R''. Given a chain of submodules of ''M'' of the form
:N_0\subsetneq N_1 \subsetneq \cdots \subsetneq N_n
we say that ''n'' is the ''length'' of the chain. The length of ''M'' is defined to be the largest length of any of its chains. If no such largest length exists, we say that ''M'' has infinite length.
A ring ''R'' is said to have finite length as a ring if it has finite length as left ''R'' module.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Length of a module」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.