|
In machine learning and computational learning theory, LogitBoost is a boosting algorithm formulated by Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The original paper〔Jerome Friedman, Trevor Hastie and Robert Tibshirani. Additive logistic regression: a statistical view of boosting. Annals of Statistics 28(2), 2000. 337–407. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.9525〕 casts the AdaBoost algorithm into a statistical framework. Specifically, if one considers AdaBoost as a generalized additive model and then applies the cost functional of logistic regression, one can derive the LogitBoost algorithm. ==Minimizing the LogitBoost cost function== LogitBoost can be seen as a convex optimization. Specifically, given that we seek an additive model of the form : the LogitBoost algorithm minimizes the logistic loss: : 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「LogitBoost」の詳細全文を読む スポンサード リンク
|