翻訳と辞書
Words near each other
・ Mandi (Lok Sabha constituency)
・ Mandi (Mirpur)
・ Mandi (Vidhan Sabha constituency)
・ Mandi Ahmed Abad railway station
・ Mandi Bahauddin
・ Mandi Bahauddin District
・ Mandi Bahauddin railway station
・ Mandelbaum Effect
・ Mandelbaum Gate
・ Mandelbaum House
・ Mandelbox
・ Mandelbrodt
・ Mandelbrot
・ Mandelbrot Competition
・ Mandelbrot set
Mandelbulb
・ Mandelholz Dam
・ Mandelia Faunal Reserve
・ Mandelic acid
・ Mandelieu-la-Napoule
・ Mandelin reagent
・ Mandelkubb
・ Mandell
・ Mandell Berman
・ Mandell Creighton
・ Mandell L. and Madeleine H. Berman Foundation
・ Mandelli's mouse-eared bat
・ Mandello
・ Mandello del Lario
・ Mandello Vitta


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Mandelbulb : ウィキペディア英語版
Mandelbulb

The Mandelbulb is a three-dimensional fractal, constructed by Daniel White and Paul Nylander using spherical coordinates in 2009.
A canonical 3-dimensional Mandelbrot set does not exist, since there is no 3-dimensional analogue of the 2-dimensional space of complex numbers. It is possible to construct Mandelbrot sets in 4 dimensions using quaternions. However, this set does not exhibit detail at all scales like the 2D Mandelbrot set does.
White and Nylander's formula for the "''n''th power" of the vector = \langle x, y, z\rangle in is
:^n := r^n\langle\sin(n\theta)\cos(n\phi),\sin(n\theta)\sin(n\phi),\cos(n\theta)\rangle
where
r=\sqrt,
\phi=\arctan(y/x)=\arg (x+yi), and

\theta=\arctan(\sqrt/z)=\arccos(z/r).
The Mandelbulb is then defined as the set of those in for which the orbit of \langle 0, 0, 0\rangle under the iteration \mapsto ^n+ is bounded.〔 see "formula" section〕 For ''n'' > 3, the result is a 3-dimensional bulb-like structure with fractal surface detail and a number of "lobes" depending on ''n''. Many of their graphic renderings use ''n'' = 8. However, the equations can be simplified into rational polynomials when n is odd. For example, in the case ''n'' = 3, the third power can be simplified into the more elegant form:
:\langle x, y, z\rangle^3 = \left\langle\ \frac ,\frac,z(z^2-3x^2-3y^2)\right\rangle.
==Quadratic formula==
Other formulae come from identities which parametrise the sum of squares to give a power of the sum of squares such as:
:
(x^2-y^2-z^2)^2+(2 x z)^2+(2xy)^2 = (x^2+y^2+z^2)^2
which we can think of as a way to square a triplet of numbers so that the modulus is squared. So this gives, for example:
:
x\rightarrow x^2-y^2-z^2+x_0

:
y\rightarrow 2 x z+y_0

:
z\rightarrow 2 x y +z_0

or various other permutations. This 'quadratic' formula can be applied several times to get many power-2 formulae.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Mandelbulb」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.