翻訳と辞書
Words near each other
・ Maximal compact subgroup
・ Maximal Crazy
・ Maximal element
・ Maximal ergodic theorem
・ Maximal evenness
・ Maximal function
・ Maximal ideal
・ Maximal independent set
・ Maximal information coefficient
・ Maximal lotteries
・ Maximal munch
・ Maximal pair
・ Maximal semilattice quotient
・ Maximal set
・ Maximal subgroup
Maximal torus
・ Maximal-ratio combining
・ Maximalism
・ Maximalist! (band)
・ Maximally informative dimensions
・ Maximally stable extremal regions
・ Maximaphily
・ Maximato
・ Maxime
・ Maxime (film)
・ Maxime Agueh
・ Maxime Alexandre
・ Maxime Annys
・ Maxime Arseneau
・ Maxime Authom


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Maximal torus : ウィキペディア英語版
Maximal torus
In the mathematical theory of compact Lie groups a special role is played by torus subgroups, in particular by the maximal torus subgroups.
A torus in a compact Lie group ''G'' is a compact, connected, abelian Lie subgroup of ''G'' (and therefore isomorphic to the standard torus T''n''). A maximal torus is one which is maximal among such subgroups. That is, ''T'' is a maximal torus if for any other torus ''T''′ containing ''T'' we have ''T'' = ''T''′. Every torus is contained in a maximal torus simply by dimensional considerations. A noncompact Lie group need not have any nontrivial tori (e.g. R''n'').
The dimension of a maximal torus in ''G'' is called the rank of ''G''. The rank is well-defined since all maximal tori turn out to be conjugate. For semisimple groups the rank is equal to the number of nodes in the associated Dynkin diagram.
==Examples==
The unitary group U(''n'') has as a maximal torus the subgroup of all diagonal matrices. That is,
:T = \left\,e^,\dots,e^) : \forall j, \theta_j \in \mathbb R\right\}.
''T'' is clearly isomorphic to the product of ''n'' circles, so the unitary group U(''n'') has rank ''n''. A maximal torus in the special unitary group SU(''n'') ⊂ U(''n'') is just the intersection of ''T'' and SU(''n'') which is a torus of dimension ''n'' − 1.
A maximal torus in the special orthogonal group SO(2''n'') is given by the set of all simultaneous rotations in ''n'' pairwise orthogonal 2-planes. This is also a maximal torus in the group SO(2''n''+1) where the action fixes the remaining direction. Thus both SO(2''n'') and SO(2''n''+1) have rank ''n''. For example, in the rotation group SO(3) the maximal tori are given by rotations about a fixed axis.
The symplectic group Sp(''n'') has rank ''n''. A maximal torus is given by the set of all diagonal matrices whose entries all lie in a fixed complex subalgebra of H.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Maximal torus」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.