|
__NOTOC__ A nanopore is a very small hole. It may, for example, be created by a pore-forming protein or as a hole in synthetic materials such as silicon or graphene. When a nanopore is present in an electrically insulating membrane, it can be used as a single-molecule detector. It can be a biological protein channel in a high electrical resistance lipid bilayer, a pore in a solid-state membrane or a hybrid of these - a protein channel set in a synthetic membrane. The detection principle is based on monitoring the ionic current passing through the nanopore as a voltage is applied across the membrane. When the nanopore is of molecular dimensions, passage of molecules (e.g., DNA) cause interruptions of the "open" current level, leading to a "translocation event" signal. The passage of RNA or single-stranded DNA molecules through the membrane-embedded alpha-hemolysin channel (1.5 nm diameter), for example, causes a ~90% blockage of the current (measured at 1 M KCl solution). It may be considered a Coulter counter for much smaller particles. ==Biological/Protein Nanopores== Nanopores may be formed by pore-forming proteins, typically a hollow core passing through a mushroom-shaped protein molecule. Examples of pore-forming proteins are alpha hemolysin and MspA porin. In typical laboratory nanopore experiments, a single protein nanopore is inserted into a lipid bilayer membrane and single-channel electrophysiology measurements are taken. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Nanopore」の詳細全文を読む スポンサード リンク
|