|
In geometric algebra, the outermorphism of a linear function between vectors is a natural extension of the map to arbitrary multivectors.〔 〕 ==Definition== Let ''f'' be an R-linear map from ''V'' to ''W''. The outermorphism of ''f'' is the unique map satisfying : : for all vectors ''x'' and all multivectors ''A'' and ''B'', where Λ(''V'') denotes the exterior algebra over ''V''. The outermorphism inherits linearity properties of the original linear map. For example, we see that for scalars ''α'', ''β'' and vectors ''x'', ''y'', ''z'', the outermorphism is linear over bivectors: : which extends through the axiom of distributivity over addition above to linearity over all multivectors. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Outermorphism」の詳細全文を読む スポンサード リンク
|