翻訳と辞書
Words near each other
・ Paravakottai
・ Paravalsa
・ Paravandellia
・ Paravane
・ Paravane (water kite)
・ Paravane (weapon)
・ Paravani Lake
・ Paravankunnu
・ Paravar
・ Paravaran Asseman (Paaviation)
・ Paravastu Chinnayasuri
・ Paravathi Parameshwarulu
・ Paravathur
・ Paravattani
・ Paravatumb
Paravector
・ Paravelleda
・ Paraventral scales
・ Paraventricular nucleus of hypothalamus
・ Paravertebral ganglia
・ Paraves
・ Paravesical fossa
・ Paravespa
・ Paravespula
・ Paraveterinary workers
・ Paraveterinary workers in Australia
・ Paraveterinary workers in Belgium
・ Paraveterinary workers in Denmark
・ Paraveterinary workers in France
・ Paraveterinary workers in Ireland


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Paravector : ウィキペディア英語版
Paravector

The name paravector is used for the sum of a scalar and a vector in any Clifford algebra (Clifford algebra is also known as geometric algebra in the physics community.)
This name was given by J. G. Maks, Doctoral Dissertation, Technische Universiteit Delft (Netherlands), 1989.
The complete algebra of paravectors along with corresponding higher grade generalizations, all in the context of the Euclidean space of three dimensions, is an alternative approach to the spacetime algebra (STA) introduced by David Hestenes. This alternative algebra is called algebra of physical space (APS).
==Fundamental axiom==
For Euclidean spaces, the fundamental axiom indicates that the product of a vector with itself is the scalar value of the length squared (positive)
: \mathbf \mathbf = \mathbf\cdot \mathbf
Writing
: \mathbf = \mathbf + \mathbf,
and introducing this into the expression of the fundamental axiom
:
(\mathbf + \mathbf)^2
= \mathbf \mathbf +
\mathbf \mathbf + \mathbf \mathbf +
\mathbf \mathbf,

we get the following expression after appealing to the fundamental axiom again
:
\mathbf \cdot \mathbf +
2 \mathbf \cdot \mathbf +
\mathbf \cdot \mathbf
= \mathbf \cdot \mathbf +
\mathbf \mathbf + \mathbf \mathbf +
\mathbf \cdot \mathbf,

which allows to
identify the scalar product of two vectors as
: \mathbf \cdot \mathbf =
\frac\left( \mathbf \mathbf + \mathbf \mathbf \right).

As an important consequence we conclude that two orthogonal vectors (with zero scalar product) anticommute
:
\mathbf \mathbf + \mathbf \mathbf = 0


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Paravector」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.